
NASA	Psyche	Mission:	Machine	Learning
Analysis	of	Hall	Thruster	Facility	Effects

Data

Alec	Dady: Major	in	CS
Daniel	Daniel	Donley: Major	in	SE

James	Fennelly: Major	in	SE

Course	Instructor: Naseem	Ibrahim
Faculty	Advisor: Wen-Li	Wang

Industry	Sponsor:	NASA	Psyche	Mission	-	Arizona	State
University

Project	Mentor:	Cassie	Bowman

A	capstone	project	report	submitted	to	the	faculty	of
The	Computer	Science	and	Software	Engineering	Department

Penn	State	Erie,	The	Behrend	College

April	2020
(Version	5.0)

Technical	Report	Series:	PSU-BD-CSSE-Class2020-Sec-001-Team-015

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Table of Contents
1. Abstract 4
2. Report Revision History 5

2.1. Changes in Version 1.5 5
2.2. Changes in Version 2.0 5
2.3. Changes in Version 2.5 6
2.4. Changes in Version 3.0 6
2.5. Changes in Version 3.5 7
2.6. Changes in Version 4.0 8
2.7. Changes in Version 5.0 8

3. Problem Statement 9
3.1. Business Background 9
3.2. Needs 9
3.3. Objectives 10

4. Requirements 11
4.1. User Requirement 11

4.1.1. Glossary of Relevant Domain Terminology 11
4.1.2. User Groups 12
4.1.3. Functional Requirements 12

4.1.3.1. Project Scope 12
4.1.3.2. User Scenarios 13

4.1.4. Non-functional Requirements 15
4.1.4.1. Product: Usability Requirements 15
4.1.4.2. Organizational: Operational Requirements 15
4.1.4.3. External: Legislative Requirements on Safety/Security 15

4.2. System Requirements 16
4.2.1. Functional Requirements 16

4.2.1.1. System Functional Requirements 16
4.2.1.2. Data Requirements 17

4.2.2. Non-functional Requirements 18
4.2.2.1. Product: Usability Requirements 18
4.2.2.2. Organizational: Operational Requirements 18
4.2.2.3. External: Legislative Requirements on Safety/Security 18

4.3. Requirements Trace Table 19
5. Exploratory Studies 20

5.1. Relevant Techniques 20
5.2. Relevant Packages/Products 20
5.3. Broader Impacts 21

6. System Design 22
6.1. Architectural Design 22
6.2. Structural Design 23
6.3. User Interface Design 27
6.4. Behavioral Design 29
6.5. Design Alternatives & Decision Rationale 34

1

PSU-BD-CSSE-Class2020-Sec-001-Team-015

7. System Implementation 35
7.1. Programming Languages & Tools 36
7.2. Coding Conventions 36
7.3. Code Version Control 36
7.4. Implementation Alternatives & Decision Rationale 36
7.5. Analysis of Key Algorithms 38

7.5.1. Data Preprocessing 38
7.5.2. Implementation of the Kalman Filter 39

8. Testing 42
8.1. Test Automation Framework 42

8.1.1. Steps for Installing Test Framework 42
8.1.2. Steps for Running Test Cases 42

8.2. Test Case Design 43
8.2.1 Test Suites 44
8.2.2. Unit Test Cases 44
8.2.3. Integration Test Cases 46
8.2.4. System Test Cases 46
8.2.5. Acceptance Test Cases 47

8.3. Test Case Execution Report 47
8.3.1. Unit Testing Report 47
8.3.2. Integration Testing Report 49
8.3.3. System Testing Report 49
8.3.4. Acceptance Testing Report 49

9. Challenges & Open Issues 51
9.1. Challenges Faced in Requirements Engineering 51

9.1.1. Availability of Industry Mentor 51
9.1.2. Understanding the Problem Domain 51
9.1.3. Correctly Setting the Project Boundary 52

9.2. Challenges Faced in System Development 52
9.3. Open Issues & Ideas for Solutions 53

10. System Manuals 54
10.1. Instructions for System Development 54

10.1.1. How to set up development environment 54
10.1.1.1. Installing Python 3.7 and Anaconda 54
10.1.1.2. Setting up the Programming Environment 55
10.1.1.3. Install Necessary Packages 55
10.1.1.4. Installing Spyder 3 56

10.2. Instructions for System Deployment 56
10.2.1. Platform Requirements 56
10.2.2. System Installation 57

10.3. Instructions for System End Users 58
11. Conclusion 59

11.1. Achievement 59
11.2. Lessons Learned 59

2

PSU-BD-CSSE-Class2020-Sec-001-Team-015

11.3. Acknowledgment 60
12. References 62
Appendix RA
Appendix R
Appendix U
Appendix T
Appendix TE

3

PSU-BD-CSSE-Class2020-Sec-001-Team-015

1. Abstract

The Psyche mission is a space mission to observe a special asteroid thought to possibly be the
core of an early planet orbiting the Sun between Mars and Jupiter [1]. The project is organized
by Arizona State University in collaboration with the National Aeronautics and Space
Administration (NASA). Within the orbiter, Hall thrusters are used as a form of electric
propulsion to eliminate the need for chemical fuel. The current problem with Hall thrusters are
sensitivities to thruster output, performance, and plume properties as a result of changing
background pressures and facility design parameters of HET vacuum test facilities [2]. As
researchers, the team will carefully analyze the facility effects data to uncover previously
undiscovered correlations and devise a method to predict and possibly correct for the sensitivity
if time permits. Various techniques from single variable correlations to multivariate correlation
analysis through machine learning will be used. As a whole, this project will contribute to
knowledge on hall thrusters and inconsistencies in thruster performance.

To achieve the objective, the team implemented a variety of data preprocessing algorithms, a
Kalman filter, and a Deep Belief Network (DBN). The data preprocessing algorithms effectively
clean collected SPT data records as well as perform Pearson correlation analysis, Principal
Component Analysis (PCA), and other useful tools. Furthermore, the data records are processed
through an implementation of the Extended Kalman filter to generate sample data points. These
sample data points were utilized to train a multitude of Deep Belief Network machine learning
models, which are used for predicting the Hall thruster performance and operation parameters.

With the use of this system, future developers can continue researching the effects of facility
parameters on SPT-140 and SPT-100 Hall thruster. The developers will be able to customize
their research approach, i.e. the parameters of the data set, the training parameters, etc. This
feature allows researchers to ask more varied and detailed questions. Additionally, future
developers may have access to more and higher quality data, allowing them to take the
conceptual ideas presented here and expand upon them, helping to discover more avenues of
research and help answer questions.

In this report we document the output of our requirements engineering process, displaying all
user requirements, system requirements, and various diagrams to help describe the theoretical
system to be built over the course of the next few months. The sections are ordered as follows.
Sec. 2 discusses the changes made throughout the iterations of the report. Following, Sec. 3 will
go over the problem statement, providing background information about the business domain.
Sec. 4 will go over the user and system requirements the system must conform to, followed by an
explanation of exploratory studies performed in Sec. 5. Next, Sec. 6 discusses the design of the
system, Sec. 7 details the implementation of the system, while Sec. 8 discusses the test suites and
cases used to validate and verify the software. Sec. 9 describes the challenges faced while
developing the system. The report concludes with the system manual in Sec. 10, the conclusion
in Sec. 11, and the references in Sec. 12.

4

PSU-BD-CSSE-Class2020-Sec-001-Team-015

2. Report Revision History

The following section discusses in detail the changes made throughout the various versions of
this report, starting with the changes made from version 1.0 to version 1.5.

2.1. Changes in Version 1.5

Overall, minor grammar and structure mistakes were corrected throughout the report. Likewise,
references to sources were added throughout the document where appropriate, then added to the
references at the end of the report.

Sec. 3 was altered to better match the description of the project based on the Psyche website and
provided resources. The business background was changed to better reflect the project
background, objectives, and needs. Likewise, the broader impacts in Sec. 5.3 were also updated.

Continuing, Sec. 4 had text added to Secs. 4.1, 4.1.3, 4.1.4, 4.2, and 4.2.2 discussing the
differences between user and system requirements, as well as functional and non-functional
requirements. Also, user requirement UP-01 and system requirement SP-01 were modified to the
rate at which the data must be evaluated. Their corresponding paragraphs about UP-01 and
SP-01 in Secs. 4.2.2.2 and 4.1.4.2 were likewise updated to reflect this change.

2.2. Changes in Version 2.0

With the updates for report 2.0, several sections and subsections were added throughout the
document. These sections include the entirety of 8, which covers the testing of the system, and
Secs. 6.2, 6.3, 6.4, 6.5, 7.4, and 9.2. Secs. 6.2 through 6.5 cover the structural designs, behavioral
designs, and rationale for each design choice, while Sec. 7.4 talks about the implementation
rationale. The last major addition, Sec. 9.2, talks about the challenges the team has faced while
implementing the system thus far.

The abstract, as well as exploratory studies, were elaborated on to better match the project
descriptions and information provided by the Psyche team at Arizona State University. Sec. 3.3,
the objectives were also changed slightly to better describe the impacts on individuals. The
exploratory studies section was expanded to include the HET performance parameter research.
Additionally, more references were added to verify the information provided in the abstract and
exploratory studies.

In Sec. 4, the system and user requirements were updated. Notably, the derived system
requirements from UF-A have been reorganized into 6 system requirements that better explain
what the system is calculating. The dependability requirement in Sec. 4.2.2.2 and Sec. 4.1.4.2
was removed since the industry mentor simply needs the results, and the actual system itself has
no time-constraints it needs to abide by. Instead, the requirement was replaced with a security
requirement. This requirement ensures the security of the generated models so they cannot be

5

PSU-BD-CSSE-Class2020-Sec-001-Team-015

modified or deleted by anybody but the developers. Lastly, the use cases were updated and the
‘Correct Sensitivity’ use case was added.

2.3. Changes in Version 2.5

Overall, references were added to increase the validity of the content of the report. Additionally,
grammatical errors were corrected throughout the document and some sentences rewritten for
clarity. Fig. 5 previously contained a dependency link between the DataInputSystem and
DataNormalizer modules. This link has been changed to an associative link since the
DataInputSystem will need a DataNormalizer module.

In Sec. 6.4, the behavioral design of the system. All of the corresponding diagrams from figures
11 through 16 have been modified to contain the actual class objects at the top, as well as better
reflect the data flow between the objects. Sec. 8.3.1’s second paragraph was altered to explain
the unit testing report in more accuracy, as the previous explanation did not reference the right
image. Lastly, Sec. 9.2 was altered to clarify the challenges faced during development.

2.4. Changes in Version 3.0

Within the requirements, the only revised user requirements include UP-01, being removed since
only the current development team will have access to the models. The team will only submit a
report describing the effectiveness of the research efforts and methodology over the course year.
For the system requirements, SF-A-02 was removed to fit a revised understanding of our outputs
for the system. System requirement SF-A-06 was also changed from Deep Q Learning to
utilizing a Kalman filter to estimate output parameters. SF-B-01 was grammatically updated to
improve clarity for the given requirement. SF-C-01 to SF-C-08 were also revised/added to reflect
how the data input system will be built. SF-D-01 to SF-D-05 were revised/added to reflect the
current state for machine learning algorithms and data mining techniques.

Within the use cases, UC-006 and UC-005 were merged into one single use case contained into
UC-005 because automatic report generation is too costly in terms of time and man-hours, so
only the calculations themselves are saved along with any generated figures. UC-007 was
removed because the correct sensitivity use case can be considered a subset of the model
evaluation. UC-006, which was the report generation use case, was removed to match the project
boundary.

For each of the test suites, TS-001 (Data Input System) was converted into Data Cleaning with
more test cases added to represent our current system. TS-002 was revised to better fit each
function within the DBN Learner, including an integration test case also being added. TS-003
was added for unit testing the single variate analysis functions. TS-004 was added to include unit
testing for each Kalman filter function and integration testing for the entire module.

In Sec. 5.3, the relevant techniques section includes the data science technique of generating data
using the Kalman Filter, as well as the FilterPy package being added in Sec. 5.1.

6

PSU-BD-CSSE-Class2020-Sec-001-Team-015

In Sec. 6.2, the class diagram of the scraper was edited in Fig. 4 to reflect the current iteration of
the scraper’s functionality. The isGraph AI was removed due to the feature being unnecessary
and not an efficient use of the team research time. The body paragraphs of Sec. 6.2 were changed
to reflect this change. Also within Sec. 6.2, the envelope pattern for the NoSQL database was
removed in an effort to simplify the data input process. Since the data could be easily contained
within a CSV file hosted on Google documents, a NoSQL database is not useful with so few data
points and such a small user base utilizing the system. In Sec. 6.5, the design alternatives and
rationale were revised to meet project changes to remove the NoSQL database with a CSV
formatted spreadsheet. Also in Sec. 6.5, the decision rationale behind the Kalman Filter and the
alternatives such as extended Kalman Filter and FIR Filter have been added.

In Sec. 6.3, the graphical user interface previously located within Fig. 10 was replaced with a
console-based user interface to improve simplicity for the project, since only the team will be
actively using the user interface, so a graphical interface is considered a luxury feature. The
industry sponsors are only interested in a final report at the end for the results from the given
system, so any features implemented will go to waste unless used by the team for research
purposes.

In Sec. 7.4, the Kalman Filter system implementation description was added. The comparisons
between the Kalman Filter and the extended Kalman Filter as well as the Kalman Filter and the
FIR Filter were added.

Sec. 8 was updated to include changes to the test suites, test cases, and test execution reports.
The test suites were updated and restructured to better organize how tests were being carried out
in Sec. 8.2.1. Several new test cases and test execution reports were added to Sec. 8.2.2 and Sec.
8.3.1 for testing the Kalman filter and data cleaning functionality. Additionally, integration test
cases were added in Sec. 8.2.3, and the corresponding test execution reports in Sec. 8.3.2.

In Sec. 9.2, a few new challenges the team faced were added. The first involved the
implementation of the Kalman filter, the second about setting proper project boundaries to
effectively organize work.

2.5. Changes in Version 3.5

Requirements SF-C-07 & SF-C-08 were modified to be more concise on normalization versus
standardization. Requirement SP-02-01 was updated to clarify that the SPT-140 is the thruster
being used on the Psyche spacecraft. The execution report of TC-016 now includes execution
steps.

A transition sentence was added in Sec. 5.3 to explain what the Psyche spacecraft will use to
reach the asteroid. Sec 9.1.3 was edited to explain the challenge faced using clearer terminology.
Sec. 2.4 was edited to better explain the changes made in report 3.0. Statements were added to
Sec. 8.2.2 and Sec. 8.2.3 for clarification.

7

PSU-BD-CSSE-Class2020-Sec-001-Team-015

2.6. Changes in Version 4.0

The first major change added was the addition of two paragraphs in the abstract. The first goes
over the main functionalities of the system, while the other discusses the broader impacts of the
system on the scientific community.

Continuing, Sec 6.4, the behavioral design of the system, was refactored to match system
operation as it currently stands. The corresponding figures were likewise modified as detailed
throughout Sec 6.4. Sec 7.5 was added to explain key implementations of preprocessing and the
configuration of the Extended Kalman filter.

In addition to this, Sec. 8 was thoroughly updated to include new test suites, test cases, and
execution reports. Additionally, execution steps were added to Sec. 8.1.2 to explain how other
test cases operate. The test suites were refactored and updated in Sec. 8.2.1, the unit test cases
added to Sec. 8.2.2. Furthermore, new sections were added to reflect the addition of system test
cases, and acceptance test cases. The system test cases were added in Sec 8.2.4, while the
acceptance test cases in Sec 8.2.5. The execution reports were likewise updated to reflect the new
additions. Sec 8.3.3 was added for the system testing execution reports, while Sec 8.3.4 covers
the acceptance testing execution reports.

A section was added regarding the open issues within the system. This is Sec 9.3 and contains
information on current problems and potential solutions.

The final major change came in the additions of Sec. 10.2.1, the platform requirements, as well
as Sec. 10.2, the system deployment, and the resulting subsections. These subsections include
Sec 10.2, the platform requirements for the system, as well as Sec. 10.2.2, system installation
instructions. Finally, Sec 10.3 was added to give instruction to end users, the future developers.

2.7. Changes in Version 5.0

In Sec 6.4, the description of Fig. 11 and Fig. 15 were updated to better describe their respective
sequence diagrams. Additionally, the time-complexity of the preprocessing analysis described in
Sec. 7.5 was corrected to the proper big-O notation. Further clarification was added to Sec. 8.3.4
to explain the difference in the system and acceptance test cases and execution reports.

Sec. 11 was added to provide a conclusion to the technical report. This section adds Sec. 11.1,
the achievements from the project, Sec. 11.2, the lessons learned by the developers, as well as
Sec. 11.3, a brief acknowledgment of the factors that led to the success of the project. Finally, an
additional appendix was added to cover the analysis of the recorded results of using the system.
This appendix is called “Appendix RA” and is located immediately after Sec. 12.

8

PSU-BD-CSSE-Class2020-Sec-001-Team-015

3. Problem Statement

The following section provides a series of information regarding the problem statement. The
problem statement includes the business background, project needs, and objectives throughout
the duration of the capstone design project.

3.1. Business Background

The Psyche mission is a space mission to a metal asteroid orbiting the Sun between Mars and
Jupiter [3]. Psyche is both the name of an asteroid orbiting the Sun between Mar and Jupiter, as
well as the name of this mission to visit the asteroid. What’s interesting is that Psyche appears to
be the exposed nickel-iron core of an early planet, one of the building blocks of our solar system.
The Psyche spacecraft is targeted to launch in summer 2022 and travel to the asteroid using
solar-electric (low-thrust) propulsion, arriving in 2026, following a Mars flyby and gravity-assist
in 2023. After arrival, the mission plan calls for 21 months spent at the asteroid, mapping it and
studying its properties [1].

Throughout the mission, the orbiter will also attempt to determine: if the asteroid is a core or just
unmelted material, the relative ages of regions of asteroid Psyche’s surface, compare the various
features to that of Earth’s core, and characterize Psyche’s topography [4]. To study the asteroid,
the orbiter will contain a Multispectral Imager, Gamma Ray and Neutron Spectrometer, and a
Magnetometer.

To reach this asteroid, NASA will rely on the use of Hall effect thrusters (HET), a form of
solar-electric propulsion. The Hall thrusters will allow for cheap and efficient travel over long
distances, making this NASA Psyche mission possible without the necessity of large fuselages
primarily for storing chemical fuel. The Psyche mission will also test a new form of
communication called Deep Space Optical Communication (DSOC), which utilizes high-rate
communication by sending lasers between the spacecraft and ground stations on Earth [3]. In
theory, Deep Space Optical Communication should allow for more information to be sent and
received within a smaller amount of time as compared to normal radio transmission.

3.2. Needs

The popularity of HET has led to an increase in the number of HET vacuum test facilities.
Unfortunately, these HET test facilities are unable to perfectly recreate the pressures experienced
in space. Since Hall thrusters are very sensitive to these pressures, they can experience multiple
different effects while being tested in these HET vacuum test facilities, impacting their
performance [2].

HET operation, performance, and plume properties are dependent on test facility configuration,
justly named “facility effects” [2]. These facilities can vary in geometry, materials, pumping
capacities, placement, and other parameters, causing significant changes in HET operation.

9

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Despite current physics-based models, no universal explanation has yet to explain all of these
observed effects. To correctly understand how the HET operates in these facilities, some model
or solution must be developed.

3.3. Objectives

Throughout the course of the project, various statistical approaches will be taken to analyze
publicly released research data on the Hall Effect Thruster Facility Effects to determine the cause
of sensitivity in controlling the thrust and other performance parameters. The team will apply
machine learning and data mining techniques to uncover previously undiscovered correlations in
data sets and devise a method to predict and possibly correct for this sensitivity. The team will
also keep documentation on any statistical or machine learning model developed, analysis of the
machine learning models, and conclusions for the research.

Development will be split into two main phases, with the first phase focusing on collecting the
initial set of data as well as designing the tools to train and deploy different types of machine
learning algorithms. The team will focus on gathering data from the plethora of research material
available, while simultaneously developing the proposed system to train and deploy models, as
well as generate reports consisting of the training and evaluation of the models. To help facilitate
data collection, the team will develop a side tool, called a scraper, to gather abstracts from
websites to pull data from. The second phase will have the team test different machine learning
models and data mining techniques to discover correlations within the facility effects data, as
well as devise a method to predict the changes in the HET performance, output, and plume
properties.

10

PSU-BD-CSSE-Class2020-Sec-001-Team-015

4. Requirements

The following section details the requirements that need to be implemented. These requirements
are the main features and functional constraints the system must conform to function properly.
The first portion, Sec. 3.1, will describe the user functional and non-functional requirements,
including a glossary of important domain terminology and the key user groups. Secs. 3.2 will
discuss the elicited functional and non-functional system requirements.

4.1. User Requirement

This sub-section covers the user requirements; the user requirements are statements written in
natural language to be later refined into system requirements in Sec. 4.2.

4.1.1. Glossary of Relevant Domain Terminology

16 Psyche: The asteroid that the spacecraft will be orbiting. Psyche is one of the largest asteroids
in the asteroid belt and is believed to be the iron-nickel core of a protoplanet.

Deep Space Optical Communication (DSOC): A new and sophisticated form of
communication, Deep Space Optical Communication encodes data in photons as compared to
radio waves in normal radio transmission, allowing for higher data rates [3].

Electric Propulsion: A form of propulsion that uses electricity, rather than chemical
components, to accelerate a propellant.

Hall Effect Thrusters (HET): A type of rocket thruster that uses electric propulsion to operate at
high thrust efficiency and density

HET Facility Effects: The observed impacts experienced by the Hall effect thrusters at HET
vacuum test facilities.

HET Vacuum Test Facilities: Commonly called HET Facilities, a site with a vacuum-sealed
area for simulating the effects of space and testing the performance of Hall effect thrusters.

National Aeronautics and Space Administration (NASA): The federal agency responsible for
aeronautics, research into aerospace, and other important space programs.

Stationary Plasma Thruster (SPT): A type of Hall effects thruster that creates a stream of
charged particles in the form of plasma to provide the electric propulsion [5].

11

PSU-BD-CSSE-Class2020-Sec-001-Team-015

4.1.2. User Groups

The primary group of users utilizing the system are the developers. The developers will need to
upload facility effects data and clean the data in order to evaluate the dynamics of the system.
The developer will also be able to run a Kalman Filter, or some other filter in order to generate
more data. As such, the developers will input data, train the model, and deploy the machine
learning model. The developers merely need to discover effective models to hand off to the
researchers, who will then take the results to conduct more research. Since the developers will
further expand on the system as a whole, with new machine learning models and/or other
statistical analysis techniques, this makes them the primary users of the system.

In terms of experience, the developers are novices in the business domain and journeyman in the
technological domain. The developers have no experience in electric propulsion and have most
likely never heard of Hall thrusters before this project. They have an understanding of some
physics but must learn more about the project domain such as how SPT-140 thrusters operate.
Their technological domain knowledge is at the journeyman level. The developers all have
experience and a good understanding of machine learning tactics but must conduct more research
on the advantages and disadvantages of different model types to implement the most effective
network.

4.1.3. Functional Requirements

Sec. 4.1.3. will discuss the user functional requirements associated with this project. Functional
requirements are statements of services the system should provide, how the system reacts to
certain inputs, as well as how the system needs to behave in particular situations.

4.1.3.1. Project Scope

Fig. 1 below demonstrates the interactions the developer can have with the system. The
developers can begin by launching the ‘Clean the Data Set’ case, where data is uploaded and
formatted into an acceptable standard for further processing. After this formatting, the system
will perform correlation analysis on the data set by calling the ‘Correlate the Data Set’ case. The
developer can then launch either the ‘Run Kalman Filter Script’ case or the ‘Evaluate DBN
Model’ case to process the data and extract useful information.

12

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 1. Use Case diagram of main user-system interactions.

4.1.3.2. User Scenarios

Appendix U gives an overview of the user scenarios, as well as tables detailing their
descriptions. Table 4.1 shows all five user scenarios, consisting of one summary use case, 3
primary tasks, and 1 subfunctions. The actor featured in this use case is a developer, since the
developers have access to all user scenarios found in the system.

Starting, Table 4.2 begins with the developer wishing to utilize the system to process data and
extract information using various algorithms, UC-001. The developer interacts with the system
through launching the preprocessing script. Afterward, the system will begin UC-002, UC-003,
or UC-004. The developer only needs to process the data once in UC-002 before beginning any
other user scenario.

Moving on to the primary task, Table 4.3 explains the process for cleaning, transforming, and
reducing the data set During the process, the system loads in the various CSV files containing the
SPT data. If the data is not present, the developer will receive a notification. After providing
valid data, the system will then clean, transform, reduce, then save the data into the system by
removing unnecessary columns, outliers, and fill in missing values with appropriate ones.

13

PSU-BD-CSSE-Class2020-Sec-001-Team-015

As for the next primary task, Table 4.4 covers UC-003, running the cleaned data set through the
correlation analysis algorithms. After data is successfully uploaded, the system will call the
necessary functions needed to calculate the various correlation artifacts. This includes scatter
plots, Pearson correlations, Principal Component Analysis correlations, and Lasso regression
correlations. The system then records the results into local storage.

The final primary task is covered in Table 4.5, and it involves running the Kalman filter script to
process the data and extract estimates of the output as well as potential data points. The system
will begin by calculating the initial state the Kalman filter should be in, followed by obtaining
the lengths of those state vectors. After creating the Kalman filter object, the system then
calculates the necessary covariance and uncertainty matrices to be used by the filter. When all
the required values are given to the filter, the next state is estimated, and data points are extracted
from this state. The state and data points are finally saved onto the local storage.

While the system is evaluating the model, a few steps will be taken to assess the capabilities of
the trained machine learning model as well as constructing the Deep-Belief Network (DBN)
model. Table 4.6 goes over these steps in the first subfunction user scenario. The system begins
this subfunction by constructing and compiling the model to create a DBN model. Afterward, the
system begins training the model by fitting the data to the model. This process can take hours
depending on the dimensional complexity and number of records in the data set. The system will
then evaluate the accuracy of the model, then serialize the model, weights, and results in local
storage.

4.1.3.3. User Functional Requirements

Appendix R goes into detail regarding the different functional user requirements in the Hall
Thruster Data Analysis Tool. The first major requirement is in Table 4.7, requirement UF-A. The
desired outcome of this project is to be able to predict and/or correct a sensitivity experienced by
the Hall thruster that cannot be predicted using current scientific models. The user requirement
mandates the system to be able to perform this action. However, it is possible that no machine
learning techniques can accurately model the facility effects data well enough to be effective in
predicting and minimizing the sensitivity.

Continuing, Table 4.8 details the requirement UF-B, where a report of the machine learning
training, evaluation, and deployment must be generated. This report will detail the model’s
accuracy and predictive capability, allowing users to determine if the trained model is
appropriate to solve a problem. The report will need such information as the training data
utilized, the analysis generated by the machine learner, and its accuracy. This report is of the
highest priority since the model cannot be determined to be effective unless the results are
compiled into a readable report and examined by a human.

14

PSU-BD-CSSE-Class2020-Sec-001-Team-015

The next major user functional requirement describes what kind of data must be used by the
machine learning model to produce the desired output. Table 4.9, or requirement UF-C, states
that information and data should be obtained from HET facilities that utilize Hall thrusters in
their simulations. This data will be the basis of training and evaluating machine learners, and will
hopefully have hidden correlations that can be used to explain the scientific phenomenon.

Table 4.10 and requirement UF-D goes over how the client wishes to solve the sensitivity issue.
Essentially, the system will make use of machine learning models to find undiscovered
correlations in published data sets. Current physics models are unable to calculate this
experienced sensitivity, so a machine learner will perform this tedious investigation.
Alternatively, the machine learner may be unable to find any correlations or scientific findings,
so data mining techniques can also be performed on the dataset in the event few machine
learning options are remaining. Data mining techniques are capable of performing operations on
large data sets, allowing them to discover previously unknown correlations and patterns hidden
within data sets.

4.1.4. Non-functional Requirements

The following subsection discusses the non-functional requirements incorporated into the
system. Unlike functional requirements, non-functional requirements are constraints and
expectations on the services and functions provided by the system. These constraints can include
restrictions on the timing of system operations, how the system must be developed, etc.

4.1.4.1. Product: Usability Requirements

Starting off the non-functional requirements, the client wishes that the system’s data set the first
focus of the Hall thruster type being used in the Psyche space-craft. This constraint on the data
set is outlined in requirement UP-02, located in Table 4.11 of the appendix. The thruster type
that the client desires to focus on first is the SPT-140. If possible, we may also include the
SPT-100 thruster type in the initial data set as well. If the system is successful in correcting or
predicting the sensitivity, the data set should be expanded to other Hall thruster types to
determine if similar results can be produced.

4.1.4.2. Organizational: Operational Requirements

Continuing, Table 4.12 describes the operational user requirement associated with the system. To
be effective in every HET vacuum facility, the system must be able to function properly on
computers so long as they correctly install the software. The requirements on what computer
specifications need to be considered are detailed in Sec. 3.2.2.3.

4.1.4.3. External: Legislative Requirements on Safety/Security

There is only one legislative requirement the system must follow to properly obey the law. As
per Public Law 112-10, Section 1340(a) and 112-55, Section 536, participants cannot be citizens

15

PSU-BD-CSSE-Class2020-Sec-001-Team-015

of the People’s Republic of China (PRC). This requirement is documented in Table 4.13. This
means that the main developers of the Hall Thruster Data Analysis Tool cannot have citizenship
in the People’s Republic of China. The reasoning for the law is unknown but must be followed to
ensure software engineering ethical guidelines are being followed. Anybody developing the
system with citizenship from the PRC must be ejected from the development process.

4.2. System Requirements

Sec. 4.2 covers the system requirements that are implemented into the project. System
requirements are structured documents that give detailed descriptions of the system’s operations
and constraints. In essence, the system requirements define what should be implemented into the
system.

4.2.1. Functional Requirements

The system functional requirements can be split into four sections. System requirements from
user requirements UF-A, UF-B, and UF-C will be discussed further in Sec. 3.2.1.1 as those are
the main features the system will implement to accomplish its goal. System requirements from
user requirement UF-D will be discussed further in Sec. 3.2.1.2 as this requirement provides
restrictions on the data set and data to be utilized.

4.2.1.1. System Functional Requirements

Starting off the system functional requirements, Table 4.14, Table 4.15, and Table 4.16 detail
requirements SF-A-01, SF-A-03, and SF-A-04, the output parameters expected to be produced
by the machine learning model. The outputs include the thrust of the HET, the specific impulse
of the thruster, and the efficiency of the thruster. Only these three parameters will be calculated
for now as they are the ones best understood by the team.

Table 4.17 and Table 4.18 requires the system to implement two techniques believed to be
beneficial in predicting the output parameters. The first requirement in Table 4.17 has the system
implement a Deep Belief Network (DBN) to extract deep hierarchical representations of the data
to potentially produce a model with high predictive capability [6]. The other requirement, from
Table 4.18 uses a Kalman Filter in order to provide an estimate of what the next state, or array of
values, will be next [8].

Continuing, the next grouping of system requirements all stem from UF-B, the data that needs to
be gathered to create the final report for ASU. The refined system requirements all detail the
different portions of the report that need to be collected and compiled together. Table 4.19
describes the first main requirement. After running either a data mining technique or machine
learning model, the results of the model will be recorded and stored in local storage for the team
to examine and include in the report. The information recorded for the report is stated in Table
4.20, Table 4.21, Table 4.22, and Table 4.23. Table 4.20 requires the recording of the training

16

PSU-BD-CSSE-Class2020-Sec-001-Team-015

data the model is trained with. Table 4.21 requires that the model type and resulting evaluation
be recorded, while Table 4.22 requires the model’s accuracy in predictions as well as the
predictive capability to be measured. Lastly, Table 4.23 requires the system to record any
correlation data extracted from the data set. This correlation data can be useful to examine the
usefulness of the data, as well as point to possible areas of research. The combination of all of
these system requirements allows reports detailing the effectiveness of each model trained or
technique used to be examined and compared against other results. This, in turn, meets all
required functionality for UF-B.

Lastly, the final grouping of system requirements are all derived from UF-D. UF-D states that
the system must utilize machine learning algorithms or data mining techniques to achieve the
correct output. Starting, Table 4.31 speaks to requirement SF-D-01. A basic way to discover
correlations is to use Pearson correlation analysis, which measures the linear relationship
between two variables [9]. Requirement SF-D-02, shown in Table 4.32, is another correlation
analysis technique. In this technique, the correlations of all of the variable combinations are
displayed on a heatmap to examine which variables have distinguishing patterns. Table 4.33
shows the next requirement, which is using Principal Component Analysis (PCA) in order to
determine feature correlations and measure the dimensionality of the data set [12]. Table 4.34
and Table 4.35 also cover requirements for generating correlation data. Table 4.34 calculates the
Lasso Correlations within the data set, while Table 4.35 has the system generate scatter plots to
examine the type of relationship between the variables. The combination of all of these
requirements completes UF-D, allowing the developers to discover any correlations within the
data set.

4.2.1.2. Data Requirements

The only functional data requirements come from user requirement UF-C. From UF-C, several
system requirements were derived to handle the raw data and transform it into a usable form by
the various techniques and machine learning models. Requirement SF-C-01 in Table 4.24
requires that the data that is read into the system via a CSV file. The reason for this is explained
later in Sec. 6.

The next requirement in Table 4.25 has the system to remove data columns with more than 60%
of the values missing. Since analyzing data is the main focus of this project, it’s vital not to
throw out any data collected regarding the subject matter. However, if any of the values are
missing, it becomes hard to extract any useful information from that variable. In this case, it’s
important to remove these data columns from the data set to be used so no wrong conclusions are
drawn. The same can be said for Table 4.26’s requirement where the system can remove nominal
data columns, nominal being value with no ordinance or sense of scale, or reference point. Data
like this cannot be useful for calculating correlations or several other techniques but can be
useful for techniques like clustering.

17

PSU-BD-CSSE-Class2020-Sec-001-Team-015

The next two data requirements are covered in Tables 4.27 and 4.28. Requirement SF-C-05 in
Table 4.27 has the system replace missing values where most of the values are known with
estimations based on the value’s type. For example, since nominal data has no ordinance,
reference, or scale, missing values can only be replaced with the mode or most common data
value. Interval and ratio values can be replaced with either the mean or median of that column.
Table 4.28’s requirement is similar to the previous table’s requirement, except it replaces outliers
identified with PCA with the appropriate mathematical function instead.

For the final two requirements described in Table 4.29 and 4.30, the data set must be transformed
in order to account for the different scales between the variables. This can be done either using
normalization techniques, as specified in SF-C-07 of Table 4.29, or standardization techniques,
as specified in SF-C-08 in Table 4.30. These two requirements will ensure that the data will be in
an acceptable format for processing.

4.2.2. Non-functional Requirements

As stated previously, non-functional requirements are constraints placed on the operation and
development of the system. The following subsection goes over the system non-functional
requirements, including product, organizational, and external requirements for the system.

4.2.2.1. Product: Usability Requirements

There are two non-functional usability requirements for system operation that place constraints
on the data to be used inside the data set. Table 4.36 speaks to requirement SP-02-01, where the
Hall thruster type used in the data set must be SPT-140 or SPT-100, where the SPT-140 type
thruster is the type being used in the Psyche spacecraft. The other usability requirement is seen in
Table 4.37, requirement SP-02-02. This requirement allows the system to utilize data from other
thruster types, under the assumption that the rest of the system is fully operational. If the problem
is solved with the thruster types SPT-140 and SPT-100, then the team is advised to see if a
similar solution can be expanded to these thruster types.

4.2.2.2. Organizational: Operational Requirements

Continuing with how the system must operate, three operational requirements can be derived
from user requirement UO-01. Going in order, Table 4.38, Table 4.39, and Table 4.40 require the
system to run on the operating systems Linux, Windows 10, and macOS, respectively. The
system must be capable of running on any system. Considering that the Python packages are
supported on any platform, the only difference in a system that must be considered is the support
for different operating systems. Since ASU and the HET vacuum test facility researchers may
use any of these platforms, it’s necessary to require each operating system to ensure the system
can operate on them.

18

PSU-BD-CSSE-Class2020-Sec-001-Team-015

4.2.2.3. External: Legislative Requirements on Safety/Security

As previously stated in Sec. 3.1.4.4., user requirement UE-01 states citizens of the PRC must not
be allowed to develop the Hall Thruster Data Analysis Tool. As such, the only system
requirement that can be derived from this user requirement is seen in table 4.41, system
requirement SE-01-01. This system requirement simply restricts the development of the system
to those who do not have citizenship in the PRC per the law.

4.3. Requirements Trace Table

The final table in Appendix R in Table 4.42, which gives a mapping table for all of the user &
system requirements talked about in the previous sections. The user requirements are displayed
on the left with descriptions to match. On the right half of the mapping table are the
corresponding system requirements that were derived from the user requirements.

Additionally, it’s important to note a small graphical error produced in Appendix R’s Table 4.42.
Upon inspection of the table heading, the indentation of the line starts at the left side of the page
as opposed to on the margin of the page. This is most probably due to a report generation error
inside CapStone.

19

PSU-BD-CSSE-Class2020-Sec-001-Team-015

5. Exploratory Studies

The following section contains significant research related to system architectural design, setting
up the environment, and broader impacts of the project. The section will start by discussing
relevant techniques needed to create the system, then continue to the relevant packages needed
by the system. The section then concludes by discussing the broader impacts of the Hall Thruster
Data Analysis Tool.

5.1. Relevant Techniques

Some relevant techniques that will be applied throughout this project are mainly Machine
Learning techniques, such as supervised learning, unsupervised learning, and reinforcement
learning. This would involve potentially implementing a Q-Learning algorithm to train the model
to make predictions based on a reward that the team will have to account for the model to learn
and improve.

The team will also have to look at which Neural Network makes the most sense to be applied in
the system, this could range from a Multilayered Perception (Classic Neural Network) to any
Recurrent Neural Network, and could potentially lead the team to design a Hybrid Neural
Network. The team will consider all of these avenues when attempting to solve the problem. The
starting point the team believes would help solve the problem would be to implement a Deep
Belief Network (DBN) that can extract deep hierarchical representations of training data sets [6].
These DBN networks can reconstruct its inputs when trained without supervision, then trained
for classification with supervision. However, if Time Series Analysis is critical we might have to
incorporate a Recurrent Neural Network. This would indicate an LSTM model that would keep
track of previous states in memory in pursuit of its goal.

To better understand what the machine learning model needs to calculate to solve the issue
described in Sec. 3.2, the objectives of the project. To accomplish this, several abstracts, such as
Frieman’s dissertation on neutral flow ingestion, will be studied to better understand what
facility effects and HET operation parameters are necessary to produce an accurate model [2].

5.2. Relevant Packages/Products

Some relevant packages that the system uses are Keras, Tensorflow, Numpy, Matplotlib, FilterPy
Seaborn, and Pandas. Numpy is a mathematical library that supplies functionality for efficient
scientific computations in Python [7]. Numpy contains several useful features, such as three
different types of correlation techniques, as well as a multitude of other tools needed to perform
data analysis on data sets. Pandas is essential to this project as it is a library that allows for
reading and writing to and from datasets [10]. Without this package, the team would not be able
to begin attempting to solve the problem. The data would be unable to be processed and used in a
machine learning model. The FilterPy package allows the team to use multiple data filters such
as the Kalman Filter, or extended Kalman Filter easily by creating them as objects [11]. This cuts

20

PSU-BD-CSSE-Class2020-Sec-001-Team-015

down on lines of code along with man-hours due to the fact that the functions for predicting the
future state and updating the matrices are already built-in with the package.

Matplotlib and Seaborn are both data visualization libraries that may be used to help the team
visualize the correlations inside the dataset [13][14]. Within Matplotlib and Seaborn, they are
capable of performing analysis on datasets using correlation scatter plots, scatter matrices, heat
maps and many more. Keras and Tensorflow are the Deep Learning libraries that allow for the
creation of Neural Networks and other Deep Learning techniques [15][16]. This will allow easy
implementation of commonly used machine learning models.

Some products that will assist the team in the development process are the Anaconda Navigator
and the Anaconda Cloud. The Anaconda Navigator allows for the creation of multiple different
Python Environments with different packages installed [17]. It also allows for easy package
installation and easy activation of the Python Environment itself. On the other hand, the
Anaconda Cloud will be used to make sure that the team works within the same Python
Environment. The Anaconda Cloud allows for Python Environments to be uploaded and shared
with the members of the development team so that everyone works in the same environment with
the same packages installed. This minimizes error within the development process as some
packages conflict with one another which could lead to an entire system breaking and having to
uninstall python and all packages associated and reinstalling.

5.3. Broader Impacts

Because we cannot measure Earth's core directly, Psyche offers a unique perspective into the
violent history of collisions and accretion that created terrestrial planets [1]. Since Psyche may
be the core of a protoplanet, data collected during orbit will provide information on the building
blocks of the solar system. The mission will help society and organizations around the globe
delve into a new field of research by exploring a new type of world made of metal.

In order to reach the asteroid, the Psyche spacecraft will make use of Hall effect thrusters (HET)
to travel with low fuel consumption. These thrusters are tested in vacuum facilities designed to
simulate deep space. However, the performance of these thrusters does not match what is
expected due to unknown phenomena. In the absence of a physics-based explanation for these
facility effects, data-driven modeling might provide a method for analyzing the wealth of
existing facility effects data and producing a model that can be used to accurately predict these
effects. This, in turn, can lead organizations to eventually discover a physics-based solution to
these phenomena, opening new avenues of research.

On the individual level, this tool will provide an analysis of the facility effects data utilizing
SPT-140 thrusters, providing evidence for researchers to conduct different types of research.
Although it doesn’t impact many people, the tool is still useful for individual researchers to
explore new avenues in attempting to understand the impacts of the facility parameters on Hall
thruster performance.

21

PSU-BD-CSSE-Class2020-Sec-001-Team-015

6. System Design

The following section will cover the entire system design as of the current sprint. At the moment,
the current relevant design consists of only the Architectural Design.

6.1. Architectural Design

The architectural design that the system uses is the Data-Model-Learner (DML), that splits up
the system into three different components, the Data, the Model, and the Learner [18]. In
addition to the DML pattern, a view module is included to visualize the data as well as display
the generated reports. Fig. 2 below shows this design pattern in action. The Data component
named the Data Management subsystem takes charge of managing the dataset that the system
utilizes. This is where the input for the Learner is generated for training. The next component in
the design is the Model component, named Data modeling. The Model is the Machine Learning
model that takes an input and predicts an output. The model will handle functions for the specific
model and for preprocessing data. The model itself is a static entity. The final part of the pattern,
the Learner, is a class that runs learning tasks on the model given data. The Learner, in this case,
is named the Data Analysis subsystem. The Learner component is where all of the Machine
Learning happens within the system. Additionally, it takes the data from the Data component and
produces a Model component that will be used to make a prediction. The View model is not
included in the design since all data-related matters are to be handled inside the Data module
itself, including visualization and utilization of the data. The Data module is more accurately
referred to as Data Management, since it must offer a convenient way to interface with the data,
such as a graphical user interface [18].

Fig. 2. The Data Model Learner (DML) design pattern for the system architecture.

Utilizing the architectural design pattern shown in Fig. 2, the component design for how the
major subsystems will operate with each other is shown below in Fig. 3. Within the System
Architectural Design, it can be seen that the published datasets will first be normalized into a

22

PSU-BD-CSSE-Class2020-Sec-001-Team-015

single format to allow for easier data handling. Next, single variables will be correlated against
thrust within the Correlation Handler System, routing the output to the Python Data
Graphing/Exporting System to help visualize the output datasets. Running Separately from the
Correlation Handler System, normalized datasets will also be distributed to each model and
learner system to follow the MDL design pattern. The Correlation Analysis Learner system will
have higher priority over the Sensitivity Adjustment Learner System, as the adjustment system
will take the output of the Correlation Analysis System as its input.

Fig. 3. The component view of module interaction within the system.

6.2. Structural Design

Within this section, the team will explore each of the components previously shown within Fig. 3
that are relevant to our current progress. The team’s main focus for implementation was to focus
on the Data and Learner modules, specifically the Data input, Filters, and Machine Learning
systems. To facilitate data collection, the team also chose to implement a data scraper, with the
structural design for the scraper provided below in Fig. 4. This section will additionally cover the

23

PSU-BD-CSSE-Class2020-Sec-001-Team-015

data model used to store the information from the initial dataset that will be fed into a machine
learning model, as well as how the models themselves will be stored.

Fig. 4. The structural design of PDF Scraper/Processor component.

Within the PDF Scraper/Processor component as shown in Fig. 4, the scraper works by utilizing
the library JSoup-1.12.1 to make connections to any given URL and analyze the HTML page
[19]. In order to effectively crawl the page, a generalized tree structure is used to load all URLs
found on the page into child nodes for each URL node. Utilizing the Breadth-First Traversal
technique, the tree is dynamically built to a specified max depth to prevent infinite web crawling.
To prevent loops from occurring within the Tree, a HashMap was utilized to ensure the
uniqueness of each link. After debugging, the team noticed that it was typically getting off track,
visiting websites that had virtually no possibility of a valid PDF. To fix this time complexity
issue, a blacklist has been implemented to avoid checking any link with forbidden domain
names. With each URL being visited, as PDFs were found, they are automatically sent to the
PDF Scraper to immediately save the PDF, relevant text, and images to a predefined directory

24

PSU-BD-CSSE-Class2020-Sec-001-Team-015

structure. Similarly, with JSON files, any link relating to a PDF would then be routed to the PDF
Scraper class. For each PDF file, the images were routed through a relevant image discriminator
implemented within the User Interface, helping to quickly identify images for data processing.
All graphs are saved in a subdirectory relative to the PDF’s original domain name.

Fig. 5. Data Input package structural design.

Fig. 5 above shows the design for the data input class within the Data package. According to the
DML pattern design guidelines, all data preprocessing and interfacing should be done within the
Data package [5]. The class diagram will need functionality to interface with and process data.
The data_input class will use the Visitor design pattern to provide the functionality for
processing the various forms of data as seen in Fig. 3, as well as being able to access and
navigate their folder structures.

The package shown in Fig. 6 is the Filters package. The team plans to implement multiple
different filters, such as the Kalman filter, Extended Kalman filter, and FIR filter. To make
things easier, the Filters package will utilize the Factory Method design pattern, which will allow
for easy implementation of more filter types if time permits.

25

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 6. Fitlers package structure design

Within the Machine Learning package shown below in Fig. 7, the team decided to make use of
the factory design pattern similar to the Filters package. With many different models potentially
being implemented, it’s wise to set the system up in a way that can handle easy expansion
without adding too much additional implementation. With this pattern, the team can achieve just
that.

Fig. 7. The Machine Learning package structural design.

26

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 8. The Machine Learning package structural design.

For the data model, CSV files were used to store the raw SPT data, facility parameters, and
metadata found within the collected abstracts. Fig. 8 above shows the Entity-Relationship (ER)
model used to relate the CSV files with each other. While the raw data and facility parameters
tables, the metadata table will hold information pertaining to if the variable is nominal, ordinal,
interval, or ratio data.

6.3. User Interface Design

Within this section, the overall User Interface (UI) design of the system is explored. Two
interfaces are presented in this section. The first UI discussed is for the web scraper currently
under development. The user interface allows for easy implementation of the WebCrawler as
shown in Fig. 9 for any researchers to be able to quickly parse PDFs and sort it into a predefined
directory format. The second interface discussed is a prototype for the Hall Thruster Data
Analysis Tool to help the developers and researchers evaluate new data.

27

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 9. The file Chooser for the PDF Scraper/Processor.

Within the user interface for the PDF Scraper and Processor, the File tab is used to easily upload
local files to pass through the parsing algorithm, as shown below in Fig. 10. The user will simply
go to the directory containing a PDF file and upload one to many PDF files for parsing. The
program will parse each PDF and add relevant resources to their respective locations within the
data collection directory.

Fig. 10. The line Separated URL Interface.

28

PSU-BD-CSSE-Class2020-Sec-001-Team-015

The JSON tab is for the utilization of web-based URLs to index websites for PDF and JSON
files as shown in Fig. 10. The user will simply copy and paste URLs, separated by newlines, to
crawl each URL before sending any PDF or JSON file found through the parsing process. All
results are shown within the console as of the third sprint.

As mentioned previously, ASU would like the team to write a report detailing the results of the
research. Since they do not need the system themselves, only the results from the system, making
a GUI is a luxury feature. For all intents and purposes, reading in necessary inputs from the
console will be sufficient enough. These inputs will be for changing the various filters, models,
and correlation analysis parameters and will be simple prompts. The developers are the only
users of the system, so not much context will be needed to explain the input.

6.4. Behavioral Design

The following sequence diagram in Fig. 11 shows the interaction between the Developer and the
Hall Thruster Data Analysis Tool. The system is controlled through running the various python
scripts used to preprocess, analyze, and make use of the data records. First, the user launches the
preprocessing script in order to convert the raw SPT data into a suitable format for future steps.
Afterward, the system will return cleaned data, to which the developer launches the various
correlation scripts that contain the logic for generating scatter plots, a correlation heatmap, Lasso
Regressions, Ridge Regressions, and performing Principal Component Analysis.

The Kalman filter processing is handled in the run_filter script, while the machine learning
training is handled in the run_model script. The run_filter script will accept the DataFrame
produced by the preprocessing script, and generates data points by processing the frame through
a Kalman filter configured to take pairs of records and generate new records. These data records
are then used to train a DBN model by running the run_model script.

29

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 11. Hall Thruster Data Analysis Tool Sequence Diagram

Next, Fig. 12 shows the interaction of objects when the data set is read into the system for
preprocessing. Preprocessing involves cleaning the data set in order to maximize the useful
information with the least amount of points. The system first uses the read_csv function to obtain
the SPT data, facility parameter data, and metadata. The data_input module will then proceed to
clean, transform, and reduce the data into an acceptable format. It begins by removing columns
with a number of values greater than the specified threshold, 60% in this case. The data_input
module will then remove nominal data columns, handle outliers and missing values within the
set, then finish off by producing normalized and standardized versions of the data sets, which are
saved to local storage for models and techniques to process.

30

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 12. Clean the Data Set Sequence Diagrams

31

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 13. Correlate the Data Set Sequence Diagram

The next sequence diagram, depicted in Fig. 13, describes the interaction of objects necessary to
perform correlation analysis on the data set. When the developer launches the correlation scripts,
the system will begin by calculating correlations and scatter plots of each variable against every
other variable. After generating the correlations and saving the scatter plots, the system will
generate a correlation heat map using the correlations. Afterward, principal component analysis
(PCA) is utilized to calculate more correlations within the data set, then Lasso and Ridge
regression are used to calculate even more correlations. The results of all these correlation
analysis methods are then returned to the data_input module.

32

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Fig. 14. Run Kalman Filter Sequence Diagram

Fig. 14 shows the sequence diagram for running a Kalman filter to evaluate data. The diagram
essentially consists of a series of calculations needed to get the values to run the system. Starting,
the system will first retrieve the cleaned data from preprocessing. After, the data is put through
PCA reduction to tune the data as well as be normalized so it’s in a proper form and the filter can
process it. The data is then passed along to the Kalman filter script. The Kalman filter then
creates the filter object, as well as the necessary matrices needed to operate the filter. After
filling in the necessary matrices, the filter is started and is run once for each pair of points in the
record. One point is put into the current state, while the other is put into the measurement to
compare against, the produced point from performing the predict and update functions, kf.x, is

33

PSU-BD-CSSE-Class2020-Sec-001-Team-015

then appended to the newly created DataFrame. Once all pairs of points are run through, the data
is returned to the run_filter scripts and saved to local storage.

Fig. 15. Evaluate DBN Model Sequence Diagram

The final sequence diagram, Generate Report, describes the interaction of objects necessary to
train a Deep-Belief Network (DBN) model using the data set, as seen in Fig. 15. The system
begins by initializing a Sequential model object. More processing is required, however. The
system will then construct the structure of the model, then compile the model. Afterward, the
system will begin fitting the data to the model to train it, which can take quite a while with a lot
of data. Following the training, the model is then evaluated to determine its accuracy and
predictive capability, with any scores returning. The model and scores are then returned to be
recorded into local storage. To do this, the DBN module first converts the Sequential model
object to a JSON structure, then opens a File object to write the model to. The weights are saved
afterward. Lastly, the scores are recorded into the local folder structure.

6.5. Design Alternatives & Decision Rationale

Another useful design pattern that could be used for the system architecture is the Repository
design pattern, which allows for all of the components of the system to access the data at a single

34

PSU-BD-CSSE-Class2020-Sec-001-Team-015

point. This would be beneficial since all of the machine learning data, as well as the results, will
be stored and accessible at a single location. However, this pattern creates a single point of
failure, where if the data is incorrectly handled going to or from the repository, or if the system
fails, the entire system will be unable to function. Additionally, the repository design pattern
does not facilitate the scalability needed to implement multiple machine learning algorithms. As
such, the Data-Model-Learner (DML) was chosen as the main system architecture since it allows
for this scalability of machine learning models.

For data management, NoSQL was a possibility of being used instead of a traditional database.
With a lot of data coming from different sources, there is no predictable format that the team can
force the data to effectively conform to without having a large number of tables. Utilizing the
envelope pattern, the data can conform to any structure while picking out relevant data into the
envelope. This was eventually chosen to be omitted in favor of a spreadsheet in Comma
Separated Value (CSV) format to streamline data input processing into a proper data frame for
the learning system and Kalman filter. Since this project only has 3 tables for holding data,
utilizing a traditional database or NoSQL database is more costly to implement as well as
manage as opposed to just using CSV files. This way, the implementation time is cut while
achieving the same goal.

The team chose to create a scraper to obtain more data to speed up data collection, increasing the
efficiency of collecting data. As opposed to manual data collection, digging through websites for
the PDFs will no longer be a time-consuming process. The system will also enforce a structured
schema for data to make pre-processing of data significantly easier. Without this scraper, manual
data collection would take a significant portion of the team’s time and would be more prone to
human error when obtaining and saving data.

In regards to the statistical analysis approach of using a Kalman Filter to generate a large sum of
data for the team, there is another filter that the team looked at that can still be a viable option to
explore. This filter is called the FIR Filter. The FIR Filter is almost the exact same thing as the
Kalman filter, however, it does not take into account the noise in the data frame, which
eliminates the noise matrix and the measured noise parameters that would normally be seen in a
Kalman Filter [21]. The team decided to explore the Kalman Filter first as it would account for
all of the effects within the dataset, however, an FIR Filter can still be explored as FIR Filters
actually maintain a lower total error metric than the Kalman Filters.

7. System Implementation

The following section covers all information on the system implementation. The section begins
by discussing the programming languages and tools utilized to develop the system, followed up
by the coding conventions used. The section concludes with the version control utilized in the
project.

35

PSU-BD-CSSE-Class2020-Sec-001-Team-015

7.1. Programming Languages & Tools

The system will utilize the Python 3.7 Programming language, the Spyder 3.6 IDE, and the
Tensorflow and Keras packages. Python is used for data processing and is especially useful for
implementing and training machine learning algorithms. The process of implementing these
complicated algorithms can be shortened with packages like Tensorflow and Keras, which
provide easy methods for creating neural networks.

To facilitate data collection, a web scraper was developed that’s capable of extracting useful
abstracts pertaining to HET operation and performance in different vacuum test facilities. This
tool will speed up the collection of the data, allowing the team to spend more time on other parts
of the project. This tool was developed on the side and in Java using the IntelliJ IDE.

7.2. Coding Conventions

The system follows the Python Enhancement Proposal Style Guide, also known as PEP-8,
written by Guido van Rossum, Barry Warsaw, and Nick Coghlan [20]. The guide will use such
rules as restricting the indentation of lines to improve readability. For instance, arguments are not
allowed in the first line of the definition of the function, unless the arguments in each line are
aligned by the opening delimiter.

7.3. Code Version Control

The system utilized Git Version Control 2.23.0 through the Spyder IDE, and the repository is
being hosted on GitHub. Using the built-in Git version control will allow for easy
synchronization with project development through the IDE, simplifying the process by
eliminating the need for third-party version control software.

7.4. Implementation Alternatives & Decision Rationale

The following section will highlight the implementation decisions and the rationale behind why
those decisions were made. The system’s development environment is set up through Anaconda
Navigator. Anaconda Navigator offers the ease of installing multiple Python Packages, along
with creating Python Environments. An alternative would be to utilize the anaconda prompt,
which requires using commands in order to manage environments and launch different software.
This approach is more prone to mistakes since it is command-based. For implementation
purposes and environment management, Anaconda Navigator will be used.

The Anaconda Navigator also allows the installation and launching of the Spyder 3.6 IDE on any
created Python environment. Spyder 3.6 was chosen because the group members are all familiar
with this IDE, and it also has a lot of nice features that are presented in a more transparent way
than other IDEs, such as PyCharm. One of the nice features is the variable explorer. The variable
explorer allows developers to watch every single variable that is used in their software. This

36

PSU-BD-CSSE-Class2020-Sec-001-Team-015

makes tracing the program much more simple for the developer. This also helps reduce the cost
of debugging as users have a window that displays each variable and what they contain, whether
it be values in an array or an object with a specific class type. This variable explorer is presented
separately from the kernel/console window entirely and is part of the default Spyder layout. In
PyCharm the variables, types, and instances are displayed in something similar to the variable
explorer, however, it is located next to the kernel/console that will display the program output.
This can become confusing as a developer coming from Spyder to PyCharm might not be able to
effectively debug the program as they will be searching for the variable explorer. Another great
feature that Spyder has is the help window and file explorer. These two windows are conjoined
with the variable explorer, in the fact that the developer only has to click a tab to switch between
the views. The help window allows the developer to search for documentation on imported
classes without having to go to the Internet. The file explorer displays the working directory of
the project and displays the files of the system. PyCharm has these features however they are not
as transparent. Since the group is familiar with Spyder and contains the required testing and
development packages, Spyder is a practical choice for developing this system.

As for the libraries and packages that the system’s implementation uses, it was decided to use
Keras, and Tensorflow in order to create, train, and evaluate the Machine Learning model
[15][16]. Keras allows developers to create Neural Networks with ease as it provides a class
Sequential(). The Sequential() class is an object that has a defined Neural Network structure, and
the behaviors of the class allow for building a model, training the model, evaluating a model, and
then deploying that model in order to make predictions on a dataset. In regards to this system, the
dataset the model predicts is the SPT-140 Hall Thruster Effects dataset. The packages Pandas
and Numpy were also used for data importation and normalization. The data gets read into a
Pandas DataFrame. The DataFrame allows the developer to have a variable that contains labels,
samples and is conveniently formatted like a Microsoft Excel spreadsheet. The DataFrame object
can then have its values stripped from it, using Numpy, in order to create an array of the values
for normalization. Normalization is then performed using a Tensorflow function, normalize().
The function takes in the Numpy array for the input, and performs a normalization algorithm
depending on the normalization order chosen, it outputs the normalized Numpy array. With these
four packages, it makes the development and implementation of the system much simpler. One
could argue the use of PyTorch, SciKit-Learn, ML Kit or CUDA over Keras, however, the
members of the group were familiar with the Keras package.

For the machine learning algorithm, the team decided to use a Neural Network. The Neural
Network would be able to learn and discover the correlations within the dataset. There are
various types of Neural Network categories that are more equipped for certain tasks. For
example, RNNs (Recurrent Neural Networks) contain recursive nodes that allow for time series
analysis, or CNNs (Convolutional Neural Networks) contain convolutional nodes that allow for
image classification. For the purposes of the system being able to output predicted data values
based on an input sample, the team decision based on the data is numerical, that a regular ANN
(Artificial Neural Network) would be equipped to handle the task. Within the three different
Neural Network categories are various structures. For example, within the ANN category, there
are eighteen different structures that all have different advantages and disadvantages. Through

37

PSU-BD-CSSE-Class2020-Sec-001-Team-015

research, the team discovered that the Deep Belief Network structure would best suit this project
as Deep Belief Networks are exceptional at finding correlations and patterns within a dataset and
then generated a new dataset based on the input data. Also during the research endeavor, it was
discovered that a similar project had been completed using a Markov Chain structure which led
the team to believe that multiple structures could be used [22]. Within the development time, the
team will implement multiple different Neural Network structures to be tested and evaluated by
the system.

For our data generation, a Kalman Filter has been implemented in order to obtain a sufficient
amount of data in order to train the machine learning model. A Kalman Filter is an algorithm that
defines a Gaussian distribution between the filter state estimate and the covariance matrix [8].
The algorithm takes into account the noise in the dataset, the measured noise, the measurement
function, a state transition matrix, and a control transition matrix. This allows the team to
generate new data samples that are accurate to the data gathered from the abstracts. An
alternative to this is to implement an extended Kalman Filter or an FIR Filter. The team is
currently processing the Kalman Filter which is able to handle linear correlations. In the future
development time, an extended Kalman Filter will be implemented in order to handle non-linear
correlations [23]. The Kalman Filter was decided over the FIR Filter due to the fact that the
Kalman Filter accounts for the noise in the dataset, which the team decided was important to
account for when generating new datasets. The extended Kalman Filter will be implemented as a
necessity in the future, and the FIR Filter can be explored as well.

7.5. Analysis of Key Algorithms

The following section discusses key algorithms implemented within the system. Sec 7.5.1 goes
over key data preprocessing algorithms needed in order to clean, transform, and reduce the data.
Sec 7.5.2, on the other hand, explains the configuration used for the Kalman filter, specifically
the model configuration and the calculation for the state transition matrix.

7.5.1. Data Preprocessing

To properly store the raw data files, they are separated into three CSV files as explained in Fig. 8
shown in Sec. 6.1. These data files are separated into the SPT Hall effect thruster data, and the
vacuum facility data. The link between the two data files link, as shown in Fig. 8, is the facility
name used to collect that record. The following pseudocode and analysis explains the
combination process.

1) spt_columns = spt_data_frame.columns
2) facility_columns = facility_data_frame.columns
3) new_columns = spt_columns + facility_columns
4) spt_values = spt_data_frame.values
5) facility_values = facility_data_frame.values
6) new_values = empty
7) for row in spt_values:

a) to_add = empty

38

PSU-BD-CSSE-Class2020-Sec-001-Team-015

b) for record in facility_values:
i) if record.facility_name equals row.facility_name:

(1) to_add = record
(2) break

c) new_values.add(concatenate(row, to_add))
8) combined_data = data_frame(new_values, new_columns)

The pseudocode assumes that the variables containing the SPT data and facility data are already
loaded into the environment. The algorithms begin by extracting the column names from the
SPT, and facility datasets, then combining them. The same thing is done for the values, except
the new matrix holding the new values is left empty for now.

The goal at this point is to take the facility name located in the spt_values matrix, and find the
corresponding facility record located in the facility_values matrix. Since the correct facility name
must be found manually, this requires a nested loop, meaning this algorithm has a worst case of
O(n*m), where n is the number of SPT records, and m is the number of vacuum facilities. The
to_add array is initially left blank. This is to ensure a default value is available in the case that
the facility record is not present within the facility_values. The inner loop will check every
facility record, and if the record is found, the algorithm will mark this record and break out of the
inner loop.

The outer loop will then concatenate the row from the spt_values with the record from the
facility_values to create one long row associating the SPT parameters as their affiliated facility.
Once every row in the spt_values matrix has a corresponding facility record appended to it, the
resulting matrix is combined with the columns derived earlier to form the combined dataset.
Since the complexity of this algorithm does not stem deeper than two loops, the time-complexity
of the algorithm is O(n*m).

7.5.2. Implementation of the Kalman Filter

In order to make the Hall Thruster and Data Analysis tool viable, an implementation of a Kalman
Filter was the proposed solution. The Kalman Filter is originally a tracking algorithm, however
the team created a modified Kalman Filter that is used for data generation. In order for the
Kalman Filter to generate accurate data, the team implemented a pairwise approach. This
approach continuously sets the state and measurements based off of the pairs. A single point can
be taken and this single point represents a generated sample estimate of the data. The following
pseudocode will explain the process of implementing the Extended Kalman filter to generate
estimated data records:

1) function get_state_transition_matrix(dataframe):
a) correlations = dataframe.correlations
b) for row in correlations:

i) sum = summation(row)
ii) for value in row:

(1) value = value / sum

39

PSU-BD-CSSE-Class2020-Sec-001-Team-015

c) return correlations
2) values = dataset.values
3) x = values[0]
4) z = values[1]
5) dimension_x = x.length
6) dimension_z = z.length
7) kalman_filter = ExtendedKalmanFilter(dimension_x, dimension_z)
8) HJac = lambda x, hx_args=None : H
9) Hx = lambda x, hx_args=None : x
10) kalman_filter.x = x
11) kalman_filter.P = dataset.covariance_matrix
12) kalman_filter.Q = random_noise(dimension_x)
13) H = identity_matrix(dimension_z)
14) kalman_filter.F = normalize(get_state_transition_matrix(values))
15) R = random_noise(dimension_z)
16) generated_data = empty
17) for (i=0; i < values.length; i++):

a) for (j=i+1, j < values.length; j++):
i) kalman_filter.x = values[i]

ii) z = values[j]
iii) kalman_filter.predict()
iv) kalman_filter.update(z, Hjac, Hx, R)
v) generated_data.append(kalman_filter.x)

The above pseudocode begins by extracting the values that the Extended Kalman filter will
utilize from the dataset. Afterward, the initial x & z state values are pulled from the values
matrix in order to perform the necessary calculations to form the filter, as seen when calculating
dimension_x and dimension_z in the following steps. After this, the Extended Kalman filter will
be initialized. Within the project, the filter was initialized using the ExtendedKalmanFilter class
found within the sklearn library.

Now that the filter is initialized, the algorithm then begins populating the necessary values: HJac,
Hx, x, P, Q, H, F, and R. Each of these matrices is configured and can be changed to best match
the experiment, but this pseudocode only utilizes default values and random noise, with the only
exception being in step 14 where the function “get_state_transition_matrix” is called. Within this
function, a matrix of size dimension_x by dimension_x must be returned.

To simulate this matrix, the correlation matrix was extracted using the numpy library. This
matrix is size dimension_x by dimension_x and each cell within this matrix is the correlation
between the two variables. For each row in this matrix, the sum of the row will be obtained,
which will be all of the correlations summed together for that row. For each value in that row
then, the value will be divided by the sum of the row. The end result will have each value in the

40

PSU-BD-CSSE-Class2020-Sec-001-Team-015

row be a percentage of the total correlation of that row, thus emulating the state transition matrix
through percentages based on the correlation matrix.

After filling in the missing matrices, the filter can now be run. As mentioned before, a pairwise
approach is used where the Extended Kalman filter is run once for every pair of records within
the values matrix. This causes the time-complexity of the algorithm to already be at O(n^2).
Within the nested loops, the x & z variables are assigned, the filter’s predict function is called,
then the update function is called. After that, the data point is generated in the filter, so it’s
extracted and appended to the genrated_data frame. To run the Extended Kalman filter once has
a time-complexity of O(n^3), so running the algorithm has a total time-complexity of O(n^5)
[24].

41

PSU-BD-CSSE-Class2020-Sec-001-Team-015

8. Testing

The following section goes over the test suites and cases used to validate and verify the software
under development. The section begins with a look at the test automation framework being
utilized in Sec. 8.1, then continues with the design of the test cases and their execution reports in
Secs. 8.2 and 8.3, respectively.

8.1. Test Automation Framework

The testing framework used to automate unit tests is the spyder-unittest framework. This
framework can also be used to automate integration tests. Additionally, spyder-unittest allows for
multiple test cases to be executed from a built-in panel added to the Spyder IDE [25].

8.1.1. Steps for Installing Test Framework

The spyder-unittest package must first be installed onto the anaconda package directory using the
conda command before adding it to an environment. First, open the terminal if on Linux or
macOS, or the command prompt if on a Windows machine. Then, run the following line in the
terminal to install spyder-unittest onto Anaconda Navigator [25]:

● Using Anaconda: conda install -c spyder-ide spyder-unittest
● Using pip: pip install spyder-unittest

The spyder-unittest testing framework can then be quickly and easily installed via the Anaconda
Navigator program used to keep environments uniform across all working machines. On the
home page, select the “Environments” tab on the left panel to bring up the environments
currently available on the system. After selecting the working environment, change the filter box
to the left of the “Change” button to say “All” instead of “Installed.” The “Installed” option only
shows the packages already installed in the environment, while the “All” option will show all
available packages.

Afterward, search for the “spyder-unittest” selection within the list of packages, then simply
click the checkbox to add the package to the environment. If spyder-unittest does not appear,
check to make sure it was installed onto the system using the above commands, then try
installing through Anaconda Navigator again.

8.1.2. Steps for Running Test Cases

To create a test file for running most test cases, first ensure that the spyder-unittest package is
installed. If the package is not installed, refer to Sec. 8.1.1. for instructions on how to install the
spyder-unittest package. If the package is installed, launch Spyder. Then, click the View menu
and expand the Panes option. At the very bottom, there should be a checkbox labeled Unit

42

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Testing. Clicking this box will provide a new pane on the right-hand side of the IDE called “Unit
testing.”

Clicking on this new pane will bring up a small window that will display all of the current test
cases. If the box is empty, simply hit the green Run Tests button, select unittest as the test
framework, then select the folder containing the test files.

To create a test file for running test cases, certain standards must be met. The first is that the
name of the test file must be named “test_[FILE NAME].py,” where [FILE NAME] is the name
of the python script being tested. Next, the script must create a class with the same file name and
must inherit the unittest.TestCase class to be recognized as a test case by the spyder-unittest
package.

Lastly, each procedure being tested must be named similar to the file, starting with “test_” and
ending with the name of the procedure being tested. Each test procedure function acts as a
separate test case since each procedure must be tested prior to being put together. From there, it’s
just a matter of inserting preconditions and postconditions utilizing the self.assert procedures
provided by the unittest.TestCase class. After creating the test file, hit the green Run Tests button
to run the test case.

Some test cases needed to be tested manually and could not be tested using the spyder-unittest
testing framework. These were primarily the system and acceptance tests, where checking the
output required running scripts that did not contain functions, and therefore could not be tested
by using spyder-unittest.

In one instance, it was more beneficial to create a custom testing script for the sole purpose of
performing acceptance testing on a non-functional system requirement instead of using the
spyder-unittest testing framework. The requirement, SP-02-01, requires the data records be from
either SPT-140 or SPT-100 HETs. This test is represented in test case 34 of Table 8.2.40. This
custom test script iterated through the raw data set, and failed if any data record had something
other than ‘SPT-140’ or ‘SPT-100’ as the thruster type. The team decided that writing additional
code to check for this instance may not be beneficial for future research by other developers.

8.2. Test Case Design

This next section goes over the design of each test case given in appendix T. For starters, each
test case has a corresponding collection of similar test cases, known as a test suite. These test
suites are described in detail in Sec. 8.2.1. A test case can be categorized as unit testing,
integration testing, system testing, or acceptance testing. Each test case will also include other
information, such as what is being tested, and the corresponding requirements and use cases that
the test case covers.

Although needed for this report version, no integration testing has been performed as of this
moment. If found necessary, it will be included in the report version 2.5.

43

PSU-BD-CSSE-Class2020-Sec-001-Team-015

8.2.1 Test Suites

For the test suites, there are six suites the test cases are organized into. The first has to do with
the data input and preprocessing needed to provide data for the machine learning model, simply
called the Data Cleaning test suite, which is shown in Table 8.2.1. This test suite is covered in
test cases TC-001, TC-002, TC-009, TC-010, TC-011, TC-012, TC-013, and TC-017.

For the second test suite, called Deep Belief Network (DBN), the test cases are shown in table
8.2.2 and cover everything needed to test the functionality of training machine learning models.
In total, there are seven test cases that cover the different functionalities required in order to
form, train, and evaluate a machine learning model. An additional test case was added, TC-039,
to test the functionality of the model_evaluator script. This test case is not included in the
integration test case which confirms the model can be trained.

For the third test suite, called Correlation Analysis, the test cases are shown in Table 8.2.3 and
cover all of the functional unit testing for the single variate analysis code. In total, there are six
test cases that cover the different functionalities required to analyze the single variate
correlations between data points obtained from the data collection process. These include
procedures for Principal Component Analysis, Pearson correlation analysis, Lasso Regression,
and Ridge Regression. All test cases and execution reports follow the spyder-unittest testing
instructions laid out in Sec 8.1.2. As many of the test cases act independently of one another, an
integration test case was not necessary.

For the fourth test suite, called Kalman Filter, the test cases are shown in Table 8.2.4 and cover
all of the functional unit testing for the Kalman filter code. There are a total of four unit test
cases and one integration test case. Each unit test case tests the functionality of each function
within the Kalman filter, and the integration test ties the entire module together to test the final
output.

The fifth test suite covers the main execution that covers the system testing and acceptance
testing of the functional requirements of the system. This suite can be seen in Table 8.2.5. There
are a total of eight test cases in the suite, with four being system testing and the other four being
acceptance testing. The sixth and final test suite covers the acceptance testing for the
non-functional requirements. Since there were very few, only five test cases were needed to
cover every non-functional requirement. This test suite is located in Table 8.2.6.

8.2.2. Unit Test Cases

Starting with the seven test cases in the first test suite, Data Cleaning, TC-001 shown in Table
8.2.7 tests for the incoming data to be in CSV format, and the resulting data parsed into the
system is in a matrix object, has more than 0 rows and columns, and the resulting matrix contains
the same data from the file. The test input used was a dummy matrix containing values ranging
from negative infinity to infinity.

44

PSU-BD-CSSE-Class2020-Sec-001-Team-015

The second test case for the first test suite, TC-002, is shown in Table 8.2.8. This test case covers
the normalization necessary to put the data into an acceptable format for machine learning
processing. The test input for the data is the output from TC-001, which is a DataFrame object
containing the dummy input data. The expected output is a matrix in a DataFrame object, with all
of the values being a positive, non-zero value. The third through seventh test cases (TC-009,
TC-010, TC-011, TC-012, TC-013, respectively) are functional tests to transform the dataset
when required to effectively clean and remove unnecessary data points. The inputs of each test
case include the data frame, and the outputs include the transformed data frame. The third
through seventh test cases are located in Table 8.2.15, Table 8.2.16, Table 8.2.17, Table 8.2.18,
and Table 8.2.19, respectively.

The next six test cases are all covered under the second test suite, and cover the functionality of
building and training a neural network. Table 8.2.9 covers test case TC-003, which tests whether
or not a Deep-Belief Network (DBN) machine learning model can be constructed. After
construction, this model is fed into the next test case in Table 8.2.10, where the model is then
compiled using the Keras library. If the test passes, the model will have the structure of a DBN.
Following compilation, the model is then the input for the next test case, TC-005, represented in
Table 8.2.11. The test input, in this case, is uploaded, normalized data, as well as the model that
was recently compiled. The system then attempts to train the model by fitting the model to the
data to obtain values for different weights. The test case passes when the model is successfully
trained. Since any accuracy is required for completing the test case, no threshold is provided.

The next two test cases in this suite, TC-006 & TC-007, deal with evaluating the accuracy of the
model and finally serializing the model for later deployment. TC-006 is described in Table
8.2.12 and takes the trained model from TC-005 as test input. If the model is successfully
evaluated, then accuracy in the range of 0 to 1 will be returned. Table 8.2.13 covers TC-007. In
this test case, it again takes the trained model from TC-005, but now serializes the model into a
JSON format for storage. The expected output for this case is a JSON file containing the
information for the model. The final unit test case is TC-039, testing the model evaluator to see if
a model can be evaluated against a data set. This test case is located in Table 8.2.28.

The Correlation Analysis test suite contains six unit test cases. The first test case in this suite,
TC-008, tests the reduce function in the pca file. This function’s sole purpose is to take a data set
and perform PCA reduction on it based on the threshold provided. The returned result is a data
set with fewer columns, called a reduced data set. The details of this case can be seen in Table
8.2.14. The next text case is TC-014 in Table 8.2.20. This test determines if the inverse_reduce
function works. This function's purpose is to perform the inverse operation on the reduced data
set to produce the original set.

The next two test cases, TC-015 and TC-022, deal with the use of Pearson correlation analysis to
generate scatter plots of the data set and a correlation heatmap of the data set. TC-015 is in Table
8.2.21 and the other in Table 8.2.25. The test will check the number of graphs in the directory to
ensure the correct numbers were generated. Unfortunately, a manual check of the graphs is

45

PSU-BD-CSSE-Class2020-Sec-001-Team-015

necessary to ensure the file fits the correct format, has the right labels, and looks appropriate.
The same standards apply to generating the heatmap.

The fourth test suite includes three unit test cases for the Kalman filter. These cases--TC-019,
TC-020, and TC-021--all contain the same input of a data frame containing more than 0 rows
and columns and no missing values. TC-019 can be shown in Table 8.2.22, with an output of a
data frame of size 1 by the number of original columns containing the average of each column in
the original data frame. TC-020 can be shown in Table 8.2.23, with an output of a symmetrical
matrix where each element is the covariance of one column against another. TC-021 can be
shown in Table 8.2.24, with an output of a square matrix of the size of the number of columns
where all values are random noise from a gaussian distribution.

8.2.3. Integration Test Cases

In the first Test Suite TS-001, shown in Table 8.2.1, there is one integration test case TC-017.
The integration test case TC-017 combines all of the unit test cases listed TC-001~TC-013 in
order to convert the manually gathered data from the scientific abstracts provided by NASA and
the team's explorations to DataFrames, an object from the Pandas Python package. This test case
can be found in Table 8.2.29.

In the second Test Suite TS-002, shown in Table 8.2.2,there is a second integration test case
TC-018, which can be seen in Table 8.2.30. The integration test case combines all of the unit test
cases, TC-003-TC-007, TC-018, in order to test that the DBN neural network can accept the
DataFrame generated from the previous integration test case TC-017. This test case also tested
that the DataFrame can be accepted and used to construct, train, and serialize a machine learning
model.

The final integration test case, TC-025, is located in Test Suite TS-004, shown in Table 8.2.4.
The test case is in Table 8.2.31. Integration test case TC-025, combines all of the unit test cases,
TC-019-TC-021. The combination of the unit test cases test that the Kalman filter can accept a
DataFrame object, and output newly generated data in another DataFrame object.

8.2.4. System Test Cases

Only one suite has system test cases, TS-005, which is the test suite housing all of the test scripts
for evaluating the main execution of the system’s main functionalities. The system test cases
ensure that the correlation analysis , preprocessing, Kalman filter, and DBN scripts all function
and fulfill the system needs.

TC-026 is covered in Table 8.2.32 and deals with ensuring the correlation analysis scripts all
generate their respective plots. TC-027 ensures that the preprocessing script can successfully
generate a proper data set. This test case is in Table 8.2.33. The next test case, TC-028, covers
the script which controls the training for the Deep Belief Network model. This test case will
ensure that the different parameters can all generate a model which can then be evaluated against
data. It’s located in Table 8.2.34. The final system test case, TC-029, deals with ensuring the

46

PSU-BD-CSSE-Class2020-Sec-001-Team-015

Kalman filter script can generate points, then save those points to the file directory for training
models. Table 8.2.35 has this test case.

8.2.5. Acceptance Test Cases

There are a total of nine acceptance test cases, four of which are in test suite TS-005, while the
remaining are in TS-006. The first four cover the acceptance testing of the first four scripts, this
ensures that the created functionality matches the requirements. The remaining four go over the
acceptance testing for the non-functional requirements.

The first four cases follow the same pattern as the four system test cases. There is one for each
set of script executions. TC-035 covers the preprocessing script in Table 8.2.41, the correlation
results in Table 8.2.42, the Kalman filter execution in Table 8.2.43, and finally the DBN script in
Table 8.2.44.

The last five test cases in suite TS-006 all have to do with non-functional requirements. The first
case, TC-030, tests the citizenship of each developer and is described in Table 8.2.36. Table
8.2.37, Table 8.2.38 and Table 8.2.39 all test to see if the system can launch on Windows, Linux,
and macOS, respectively. The last acceptance test case is in Table 8.2.40 This case checks the
‘ModelType’ column inside the data set and tests if each record is either ‘SPT-140’ or
‘SPT-100’.

8.3. Test Case Execution Report

The following subsection discusses the execution reports of each of the test cases created thus
far, as given in appendix TE. Each test case has a matching test execution report, which records
the results of running the test case.

8.3.1. Unit Testing Report

Each execution has a similar execution setup, and will only be described once since the main
difference between each execution is the folder containing the correct test scripts. To run a test
case using a spyder-unit test, the user must navigate to the unit testing panel found on the
right-hand side of the Spyder IDE. If the panel isn’t present, select the View tab on the menu,
then select “Panes,” then at the bottom check the box that states “Unit Testing.” This will
activate the unit testing pane. On the pane, select the gear in the top-right corner of the pane, then
select “Configure.” On this pop-up window, select the unit test for the testing framework, then
select the folder containing the test scripts. Afterward, press the “Run Tests” button above the
pane to execute all available test cases.

Some execution reports include different instructions, since some non-functional requirements
either did not require the use of a test script, or they were manually tested as the spyter-unittest
framework could not cover it.

47

PSU-BD-CSSE-Class2020-Sec-001-Team-015

The first two execution reports deal with the module to upload data into the system, then the data
normalization to format the data. For the first execution report as seen in Table 8.3.1 of
Appendix TE, the first execution resulted in failure since the resulting matrix needed did not yet
exist. After implementing the required parts of the function to accept data, the test passed. The
second report, detailed in Table 8.3.2, had a similar problem as in the previous report but had an
added problem. The Information Normalization System shown in Fig. 5 contains the
DataInputSystem class and DataNormalization class. The DataInputSystem class was needed in
order to make the DataNormalization class perform correctly. An error occurred where the file
path for the DataInputSystem.py file could not be found. After correcting the file locations and
implementing the code, the test passed. The next five execution reports deal with the data
cleaning process, effectively transforming the dataset to be useful for further analysis. Table
8.3.9 through Table 8.3.13 displays the test execution report for TC-009, TC-010, TC-010,
TC-011, TC-012, and TC-013, respectively. For each execution report, the tests failed once
during the initialization of the test cases but worked on the first implementation afterward.
Multiple more records were run to ensure that the test cases still passed after numerous additions.

The next set of execution reports in the second suite covered the functionality of the building and
training a machine learning model. For the reports in Table 8.3.3 through Table 8.3.7, running
the test cases using the spyder-unittest package caused Spyder to crash unexpectedly. The
solution to this was to remove the class structure used to organize the model building, training,
and evaluation. After this, TC-004 in Table 8.3.4 passed and successfully constructed the model.
The execution reports in Table 8.3.4, Table 8.3.5, Table 8.3.6, and Table 8.3.7 all had another
issue involving the use of the Keras and TensorFlow modules inside class structures. Removing
the class structure solved the issue. The last report is for TC-039 and goes over the model
evaluation, located in Table 8.3.22.

The next set of execution reports in the third suite covered the functionality of the correlation
analysis. Table 8.3.8 shows the execution report for the reduce function in the PCA script. A few
errors occurred in trying to get the appropriate index, but the data was reduced after a few
attempts. For the reports in Table 8.3.14 show the report for testing the inversion operation for
PCA reduction. Table 8.3.15 shows the report execution of generating graphs from the PCA
components. The execution report for generating the scatter plots and the correlation heatmap are
in Table 8.3.19 and Table 8.3.20, respectively. Finally ,the Ridge and Lasso correlation graphs
are covered in the next report located in Table 8.3.21.

Finally, the last set of execution reports contains three test cases, TC-019 through TC-021,
mapped to Table 8.3.16 through Table 8.3.18. The first test execution initially failed due to
incorrect mapping of values from string to float but successfully constructed the state estimate
after correction. The next test execution initially failed due to a misalignment in the size of the
covariance matrix. After re-evaluating the mathematics for constructing the correct covariance
matrix, the test cases successfully passed. Moving to the generation of the noise uncertainty
matrix generation in TC-021, the execution initially failed due to not being initialized, before
being correctly instantiated.

48

PSU-BD-CSSE-Class2020-Sec-001-Team-015

8.3.2. Integration Testing Report

For the integration test execution reports, there are 3. TC-017’s report is described in 8.3.23,
while TC-018’s report is described in 8.3.24, and TC-025’s report is described in 8.3.25. For
TC-017, a logical error occurred where the normalized and standardized data sets were
successfully calculated and within range, but did not come out to be the expected values. The
error was discovered to be an improper calculation, and was corrected thereafter. After that, the
data_input script can successfully format data to a standardized and normalized format.

For TC-018, the DBN functionality was integrated together to successfully train and evaluate the
predictiveness of the trained model. The test case was successful after only two runs. For
TC-025, it tested the integration of the Kalman filter. Since thorough research and planning went
into the implementation, only two records were needed for the first pass of the test case. With
this, the Kalman filter is now able to accept a data frame containing SPT data and extract
predicted states as well as data points that can be used for further analysis.

8.3.3. System Testing Report

All four system testing reports are under the same test suite, as all system test cases cover the
basic execution of the main functionality of the system. Each of these cases are manually tested
since the generated graphs need to be generated manually and the only thing that can be
automated is the number of graphs generated. For Table 8.3.26 which has TC-026, the execution
report requires the tester to open the scripts, then run them to generate the plots. A total of three
plots are expected, and were analyzed to ensure they have proper labels and a title.

The report for TC-027 is found in Table 8.3.27 and evaluates the preprocessing script used to
clean, transform, and reduce the data. Furthermore, the reports for running the model and the
Kalman filter are found in Table 8.3.28 and Table 8.3.29, respectively. Since these functionality
has gone through diligent unit testing, little testing was needed to ensure accurate results for
these reports.

8.3.4. Acceptance Testing Report

There are a total of nine acceptance tests to confirm the functional and nonfunctional
requirements of the system. The first four are in test suite TS-005 and deal with the functional
requirements, while the latter five deal with the non-functional requirements. Starting with
TC-035 in Table 8.3.35, the report tests to see if the requirement of preprocessing the data in the
required format is achieved. Similar tests were performed for the correlation analysis scripts, the
Kalman filter, and the DBN model script found in Table 8.3.26, Table 8.3.27, and Table 8.3.28,
respectively. These acceptances are similar to the system tests of the same vein, except they test
if the functionality achieves the requirements. This testing is “black-box” testing, where the
testers are unaware of how the inner-workings of the product function, and instead focus on the
higher-level concepts. The main difference between the system testing reports and acceptance
testing reports is that the system testing reports cover the end-to-end functionality of the system,

49

PSU-BD-CSSE-Class2020-Sec-001-Team-015

while the acceptance testing report instead ensures the system conforms to the user and system
requirements.

The latter five reports as mentioned before all test the non-functional requirements, and can be
found Table 8.3.30 through Table 8.3.34. The first report, which covers TC-030, located in Table
8.3.30, checks the citizenship status of each developer. Since all the developers don’t have a
Chinese citizenship, the test passes. The next three reports all test the environment on Windows,
Linux, and macOS, respectively. The final report tests if the data records are all from SPT-140 or
SPT-100 thrusters.

50

PSU-BD-CSSE-Class2020-Sec-001-Team-015

9. Challenges & Open Issues

This section will present the team’s challenges and issues faced in the requirements engineering
process with some insight on the availability of the industry mentor and understanding the
problem domain.

9.1. Challenges Faced in Requirements Engineering

Overall, the sponsor was not very descriptive with their problem at first, and it was difficult to
determine what the output of the program should be. It seems as if our sponsor is a middle man
to the technical people which makes it a little difficult as the person we meet with bi-weekly
does not have all of the requirements, specifications, or technical knowledge of the problem we
are working on and has to ask the technical people for us to get our desired answers.

In the future, this problem could be eliminated by asking them to be as specific as they can be
with what they want.

9.1.1. Availability of Industry Mentor

One of the biggest problems faced in development was maintaining proper contact with the
Industry Mentor, Arizona State University’s Cassie Bowman. Taking into account her schedule
and the developer’s schedule, there was only 1 small block of time on Tuesdays when each party
could attend a meeting. Additionally, while Cassie is in charge of managing the project to keep it
on track, the developers were instructed to contact other members of the Psyche team at ASU
with more technical questions, meaning to completely elicit all requirements, the development
team needs to adhere to the schedules of several other people.

The meetings are set up to be bi-weekly, with informative optional meetings providing
background context once or twice a month. These optional meetings also caused issues, being
difficult to attend due to tight time constraints. No member has missed a meeting to date.
Additionally, since Arizona was not affected by daylight savings time, both the meeting with the
industry sponsor, as well as the faculty advisor, needed to be rescheduled.

9.1.2. Understanding the Problem Domain

The problem domain primarily involves knowledge of physics at the atomic level. The Hall
thrusters utilize charged particles to propel the spacecraft. Since none of the developers have a
physics background, several hours of studying will be required throughout the course of the
project to build a solid foundation of understanding. The material is complicated and bountiful as
well, with over 20 papers published on HET facility effects on Hall thrusters. If an understanding
is not built properly, then the team will be unable to devise a technique to predict or correct the

51

PSU-BD-CSSE-Class2020-Sec-001-Team-015

sensitivity to build this complicated understanding, the team will need to spend most of the initial
development time conducting research and gathering information on the type of data to analyze.

9.1.3. Correctly Setting the Project Boundary

One recurring challenge the team has faced is defining the project boundary well enough to limit
the amount of feature creep from unnecessary components in the system. Previously, the team
considered implementing a report generator to speed up the data analysis portion of the project.
However, this was overstepping the boundary of what was needed since the cost to implement
this feature was high and contributed little to nothing to the system.

ASU does not require a report generator or some fancy system for processing data, only a final
report detailing the results of our analysis and any other information we deem important. As
such, the project scope at the beginning encapsulated too many ‘nice-to-have’ features and did
not focus on the entire goal of the project: research and analysis.

Through constantly refining our goals, documents, and understanding of the domain, the team
has overcome this issue through diligent work. The system today is more well-defined and is
more oriented on analyzing the SPT data set for any useful information rather than attempting to
streamline the process through automation. ASU does not require this automation, so any feature
that does so is feature creep.

9.2. Challenges Faced in System Development

Some issues arose during the development of the system. These issues occurred during the
creation of the data input system for accepting the facility effects data, as well as the prototyping
for creating the neural networks. The first issue involving the data input system had to do with a
limitation with Python 3.7. The first issue involved the files being unable to import classes from
other files. The solution to this was to change the default working directory to the local
repository’s folder path.

The next problem had to do with a limitation to the Keras library for implementing different
machine learning algorithms. A class structure was used in the Python scripts to organize the
files associated with developing the system. Due to the class structure, Keras’ functions could
not be called to initialize or train the model. The solution here is to either figure out how to
correctly inherit the necessary procedures to ensure the model can be initialized in the class
structure, or simply remove the machine learning from the class structure approach to simplify
the code. The latter approach will be implemented for ease of use.

The next challenge the team faced was involving the implementation of the Kalman Filter. In
order to have a fully functional and accurate Kalman Filter, there are many parameters that must
be accounted for and accounted for accurately. Some of the parameters that were causing issues
were the noise matrix, the state transition matrix, the measurement function, and the control

52

PSU-BD-CSSE-Class2020-Sec-001-Team-015

transition matrix. This is where the team had to really come together in order to have a
discussion on what these parameters were, how they affect the Kalman Filter mathematically,
and how the parameters are acquired. After gathering a solid concrete understanding of the
Kalman Filter and the associated parameters, it was relatively simple to implement into the
system itself.

9.3. Open Issues & Ideas for Solutions

As it stands, there are two primary issues with the current Hall Thruster Data Analysis Tool. The
first problem is the lack of a scalable solution for implementing more algorithms for analysis for
both Kalman filters and machine learning. This occurred because of the lack of time needed to
fully explore each option. The team instead performed a detailed analysis of one approach taken.
In the future, more developers could work on scalable solutions to implement more types of
filters and machine learning algorithms.

The machine learning algorithm implemented, the Deep Belief Network (DBN), was also not
optimized to attain the highest accuracy possible. More can be done to optimize the performance
and accuracy. Another such improvement would be to collect more data. For more information
on the experiment and findings, refer to Appendix RA, the results analysis.

53

PSU-BD-CSSE-Class2020-Sec-001-Team-015

10. System Manuals

This section highlights the Instructions on how the system will be developed and deployed.
Instructions for setting up the development environment are provided in Sec. 8.1.

10.1. Instructions for System Development

The following subsection details the needed steps for setting up the development environment
and any further extensions needed to develop the system.

10.1.1. How to set up development environment

There are four main steps needed to set up the development section. The first is to install the
language being used, Python 3.7, and the corresponding package manager, Anaconda. After
setting up those tools, the steps proceed for setting up the programming environment, installing
the packages needed for development, then concluding with the installation of Spyder 3.

10.1.1.1. Installing Python 3.7 and Anaconda

Download and Install the Anaconda Navigator from Anaconda Python Distribution using the
instructions from the following URL:

https://www.anaconda.com/distribution/#download-section

To run the development environment, Python 3.7 and any dependents must be installed to run the
system’s main feature: machine learning algorithms. This is because Python contains several
useful packages, mentioned in Sec. 8.1.1.3, that will be used for easy implementation of data
analysis techniques and machine learning algorithms. Fig. 17 below shows the download page
for Python 3.7. Python 3.7 and the Anaconda Navigator can be downloaded at the following link:

Fig. 17. Download page for Python 3.7

54

https://www.anaconda.com/distribution/#download-section

PSU-BD-CSSE-Class2020-Sec-001-Team-015

After the Anaconda Navigator and Python 3.7 have been installed, it is time to set up the Python
Programming Environment

10.1.1.2. Setting up the Programming Environment

First, open the anaconda prompt to begin initializing the Nasa Environment as shown below in
Fig. 18. This prompt will be launched by Anaconda, and will begin setting up the programming
environment.

Fig. 18. Anaconda Prompt begins initializing the NASA development environment.

The prompt should look exactly like a regular command prompt or terminal, however it will be
named Anaconda Prompt. Once this prompt is open you can go ahead and run these commands
to create the Python Environment and then activate the environment:

1. conda create -n NASAEnvironment python=3.7 anaconda
2. source activate NASAEnvironment

10.1.1.3. Install Necessary Packages

There are several packages used inside the development environment. Such packages like Keras,
TensorFlow, Matplotlib, Numpy, Pandas, and seaborn will need to be installed through the
Anaconda terminal. To install the above-mentioned packages, follow the following instructions:

1. conda install -n NASAEnvironment keras==2.2.4
2. conda install -n NASAEnvironment tensorflow==1.14.0
3. conda install -n NASAEnvironment matplotlib==3.1.1
4. conda install -n NASAEnvironment numpy==1.16.5
5. conda install -n NASAEnvironment pandas==0.25.1
6. conda install -n NASAEnvironment seaborn==0.9.0

55

PSU-BD-CSSE-Class2020-Sec-001-Team-015

10.1.1.4. Installing Spyder 3

To install Spyder 3, the IDE, go to the Anaconda Navigator Environments, make sure that
NASAEnvironment is selected and then go back to Home and Install Spyder, if specific version
is needed click the settings gear and it will show a dropdown to install the specific version of
3.3.6. Fig. 19 below depicts the process. Clicking on the black gear as indicated by the arrow will
allow one to switch the version. Then, by pressing install, Spyder 3 will install on the machine.

Fig. 19. Installation of Spyder 3 through Anaconda Navigator.

10.2. Instructions for System Deployment

Within this section, the overall instructions will be explored for system deployment. All platform
requirements and system installation instructions are included below for anyone wishing to
utilize the models described throughout the technical document.

10.2.1. Platform Requirements

The Hall Thruster Data Analysis tool was implemented in Python and is cross-platform between
Windows, macOS, and Linux. Simply follow the installation guide detailed in Sec. 10.2 if you
wish to deploy the system, or Sec 10.1 if you wish to develop for the system. All that is required
is to set up the appropriate environment to execute any required scripts.

56

PSU-BD-CSSE-Class2020-Sec-001-Team-015

10.2.2. System Installation

The Hall Thruster and Data Analysis tool can be installed with ease. The codebase can be
downloaded from the GitHub Repository. From there the scripts can either be run through a
Python IDE, or through the command prompt. Fig. 20 below shows an image of the
preprocessing script being run within the Spyder IDE. The steps for installing the necessary
packages, dependencies, and IDE are the same as covered in Sec. 10.1.1.

 Fig. 20. Running the preprocessing script through the Spyder IDE.

All of the scripts are functional through the IDE. If the IDE is not available, all scripts are still
executable as long as python 3.7 is installed as specified in previous sections. The scripts can be
run by clicking the green arrow button shown at the top bar below ‘Debug’ in Fig. 20. Fig. 21
shows how the preprocessing script can be executed through the command prompt.

Fig. 21. Running the preprocessing script through the terminal.

57

PSU-BD-CSSE-Class2020-Sec-001-Team-015

The instructions for running the script outside the IDE are the same for all platforms, as long as
the terminal on Linux/macOS, or the command prompt on Windows is available, and the correct
python version is installed. For running the script as shown in Fig. 21, first navigate to the folder
containing the script, then run the following command:

python [SCRIPT_NAME].py

If any errors occur, ensure that the command prompt or terminal is being run as an administrator,
and ensure that the script is executable from the command line. On linux, you can determine if a
file is executable by a user by using the command:

ls -l

10.3. Instructions for System End Users

End users in this case are considered to be the future developers looking to gain information
from the system. For these individuals, following the above steps in Sec 10.1.1 will allow the
future developers to continue research utilizing the implemented techniques and begin their own
research.

On the other hand, if the developer merely wishes to utilize the scripts on new data sets without
modifying the system, then following the steps in Sec 10.2 will set up the system for immediate
execution. If the developers wish to utilize the system as-is, then they should ensure that their
personal dataset matches the format of the raw_data csv file to ensure that the system works as
configured. Any changes to the raw dataset’s format should follow instructions laid out in Sec
10.1.1 to ensure the developer is correctly setting up their experiment.

58

PSU-BD-CSSE-Class2020-Sec-001-Team-015

11. Conclusion

The following section discusses the conclusion of this CapStone project and the technical report.
Sec. 11.1 discusses the achievements of the project, Sec. 11.2 covers the lessons learned
throughout the project by the developers, while Sec 11.3 acknowledges those who supported the
team throughout their college and CapStone experience.

11.1. Achievement

The goal of creating the Hall Thruster Data Analysis Tool was to examine relationships between
the SPT performance variables and vacuum facility parameters to discover new correlations, as
well as try to predict the sensitivities experienced by the thrusters within these vacuum facilities.
Overall, the team was successful in implementing a deep learning structure called the Deep
Belief Network (DBN), and through experimentation, the team was able to produce a model with
an accuracy of 98% when tested against the original data set.

The team was also able to overcome the problem of not having enough data records to
adequately train models. This was accomplished by implementing a Kalman filter to generate
estimated data records. Through this, machine learning models could be trained using the
plethora of points generated. Additionally, the team generated numerous scatterplots, a heatmap,
several regression graphs, and other artifacts to examine the relationships between the variables.
These results are further discussed in Appendix RA, the analysis of the results.

11.2. Lessons Learned

Throughout the project, the team overcame numerous challenges, as detailed in Sec. 9. The team
learned early on about the sunk cost fallacy, where continuing to invest resources to avoid loss
and maintain the status quo can be more harmful than admitting errors and starting in a new
direction [26]. This occurred while the team was struggling to redefine its project boundary.
Instead of working on a system with multiple faults, the team instead chose to rework a large
portion of the system’s structural design to better match the functional requirements. Although it
was more work, the result is superior to using a flawed system.

The team additionally learned about being personally responsible for the planning, execution,
and confirmation of activities through the CapStone system. The team did not have much
experience in project and workflow management before this project, so managing the work
without much assistance from faculty was a challenge. Like any job, however, simply putting
forth an effort to learn and to try allowed the team to learn these management skills and complete
the project.

59

PSU-BD-CSSE-Class2020-Sec-001-Team-015

11.3. Acknowledgment

This CapStone project is sponsored by Arizona State University in collaboration with NASA.
This project is managed by Cassie Bowman, an associate research professor in the School of
Earth and Space Exploration at Arizona State University and co-investigator on the Psyche
Asteroid mission. The principal investigator of the project is Dr. Jason Frieman, an electric
propulsion systems researcher at the NASA Glenn Research Center.

Each member experiences their journey during their time at Penn State Behrend. For Daniel
Donley, much of his financial support came out of his pocket by working multiple part-time jobs
throughout his college career, with some support from his parents, Patrick and Tina Donley. To
pay for his college tuition, Dan took on part-time jobs on and off-campus to make up the deficit
each semester and continue his education. Often, he would work 20 to 30 hours per week on top
of schoolwork and maintain an active social life. At some points, he even had up to 3 part-time
jobs at once just to make ends meet. Regardless, much of Daniel’s academic success comes from
the support of the excellent faculty found in the software and computer engineering department
at Behrend. Through the assistance of industry mentor Dr. Wen-li Wang, Daniel and the rest of
the team learned valuable skills and received critical feedback to improve themselves.
Additionally, Dr. Abdallah Abdallah encouraged Daniel to explore areas of interest outside his
comfort zone, solve problems in unique ways, and gain confidence in presenting his work to
others for critical review.

James Fennelly experienced a multitude of new perspectives within his years in Penn State.
Starting in Penn State Harrisburg, James was financially supported through his own personal
loans and scholarships, as well as some financial support from his parents, Jim and Betty
Fennelly. James worked throughout his years at school as a Chegg tutor, a food service worker,
and student researcher under Dr. Abdallah Abdallah. Always having a passion for computers and
programming, James has been intrigued with how computers worked since about the age of four,
beginning to program at the age of ten. With support by friends and colleagues, James
continuously learned new material to refine his current success within primary school and
college. James found a plethora of invaluable knowledge working under Dr. Abdallah Abdallah,
learning how to effectively research and document coherently, opening new ways of approaching
problems to find unique solutions to unsolved problems. James would also like to thank Dr.
Wen-li Wang for constantly challenging his problem solving abilities over the past two years,
providing a stronger foundation to becoming an effective software engineer. Finally, James
would like to thank Dr. Naseem Ibrahim, for exposing James to the world of web services and
instructing our class in senior design. Everyone listed above made a massive impact on James
Fennelly’s progress and perspective on algorithmic design, engineering, and research.

The experience of Alec’s journey during his time at Penn State Behrend was great at times and
not so great at other times. Most of Alec’s financial support came in the form of student loans
and out of the pockets of family members such as his mother Christy Szolis, and his now late
great grandmother, Nancy Fischer/Nunzia Mineo. To pay for necessary goods to live such as

60

PSU-BD-CSSE-Class2020-Sec-001-Team-015

rent, food, utility bills, etc., Alec took up part-time jobs off-campus to pay for these necessities
without impacting his family's financial situation whatsoever. Alec would typically work 20
hours a week or less to cover these necessities while also trying to maintain good academic
standing. There were some points in Alec’s college career where Alec thought he wasn’t good
enough at what he was studying or planning on becoming, however with the help of his friends,
colleagues and some faculty at Penn State Behrend, he was reassured that he was good enough to
complete his academic studies. Alec always tried to surround himself with peers that he
considered were better than him, as he would try to interpret their extensive knowledge to add it
to his own. Some of these peers include the very group members that worked on this project,
Daniel Donley and James Fennelly. He contributes parts of his academic success to them as he
could always go to them for help if he encountered trouble in something he was working on,
whether it was this project itself or a project for another class. Another colleague that affected
Alec’s work ethic was Daniel Kovelavich. Alec had many classes with this student and became
friends with this student within the classroom. If you know who this student is then you might
know he has a job offer waiting for him at Microsoft, a massive software company that almost
anyone would want to work for. With Daniel’s accomplishment, he set the bar for how great
Alec must become at programming and software engineering to accomplish his own goals.
Lastly, Alec contributes to the rest of his academic success to the faculty at Penn State Behrend.
More specifically he contributes his academic success to his faculty advisor Dr. Wen-Li Wang,
along with Dr. Matthew White, Dr. Richard Zhao, and Dr. Naseem Ibrahim. All of these
professors proved to be very helpful for Alec and Alec was able to contact them whenever he
needed assistance. Alec thinks that these professors make up the heart and soul of the software
engineering department at Penn State Behrend and hope that if new professors come, that they
emulate the same ethics that these professors do, as these professors show that they truly care
about a students academic learning progress and are always willing to help any student.

61

PSU-BD-CSSE-Class2020-Sec-001-Team-015

12. References

[1] Arizona State University, Psyche Mission - A Mission to a Metal World,
https://psyche.asu.edu/
[2] Frieman, J.D., Characterization of Background Neutral Flows in Vacuum Test Facilities and
Impacts on Hall Effect Thruster Operation, 2017, Chapter 1.
[3] Oh, D. Y., Collins, S., Goebel, D., Hart, B., Lantoine, G., Snyder, S., ... & Rotlisburger,
L. (2017). Development of the Psyche Mission for NASA’s Discovery Program. In 35th
International Electric Propulsion Conference, Atlanta, Georgia.
[4] Jet Propulsion Laboratory at the California Institute of Technology, Missions | Psyche,
https://www.jpl.nasa.gov/missions/psyche/
[5] Delgado, J. J., Lord, P., & Rotlisberger, L. C. (2016). Adaptability of the SSL SPT-140
Subsystem for use on a NASA Discovery Class Missions: Psyche. 52nd AIAA/SAE/ASEE Joint
Propulsion Conference, p. 4542.
[6] Lisa lab, Deep Belief Networks. Date Accessed 10/9/19,
http://deeplearning.net/tutorial/DBN.html
[7] NumPy developers, NumPy. Accessed 10/26/19, https://numpy.org/
[8] tbabb, How a Kalman filter works, in pictures. Accessed 1/27/20,
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
[9] Statistics Solutions 2019, Correlation (Pearson, Kendall, Spearman). Accessed 2/17/20,
https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/
[10] McKinney, W., The pandas project. Date Accessed 10/26/19,
https://pandas.pydata.org/about.html#community
[11] Labbe, R., FilterPy. Accessed 2/6/20, https://filterpy.readthedocs.io/en/latest/index.html
[12] Praynay, D., Not 1, not 2…but 5 ways to Correlate. Accessed 2/17/20,
https://towardsdatascience.com/not-1-not-2-but-5-ways-to-correlate-6ac92cf42f0f
[13] Hunter, J., Dale, D., Firing, E., Droettboom, M., Matplotlib. Date Accessed 10/26/19,
https://matplotlib.org/#
[14] Waskom, M., seaborn: statistical data visualization. Date Accessed 10/26/19,
https://seaborn.pydata.org/
[15] Chollet, F., Keras: The Python Deep Learning library. Date Accessed 10/26/19,
https://keras.io/
[16] Google Brain. Why TensorFlow. Date Accessed 10/26/19, https://www.tensorflow.org/about
[17] Anaconda Inc, Anaconda Distribution. Accessed 10/7/19,
https://www.anaconda.com/distribution/#download-section
[18] Feng, J., The MVC for Machine Learning: Data-Model-Learner (DML) － Part 1. Date
Accessed 10/7/19,
https://hackernoon.com/the-mvc-for-machine-learning-data-model-learner-dml-8127d793f930
[19] Hedley, J., jsoup: Java HTML Parser. Date Accessed 12/13/19, https://jsoup.org/
[20] Rossum, G., Warsaw, B., & Coghlan, N. (2001, July 5). PEP 8 -- Style Guide for Python
Code. Accessed 10/7/19, https://www.python.org/dev/peps/pep-0008/#introduction.
[21] Shmaliy, Y. S., Zhao, S., & Ahn, C. K. I. (2017). Unbiased Finite Impulse Response
Filtering: An Iterative Alternative to Kalman Filtering Ignoring Noise and Initial Conditions.
IEEE Control Systems, 37(5), 70–89. doi: 10.1109/mcs.2017.2718830

62

https://psyche.asu.edu/
https://www.jpl.nasa.gov/missions/psyche/
http://deeplearning.net/tutorial/DBN.html
https://numpy.org/
https://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/
https://www.statisticssolutions.com/correlation-pearson-kendall-spearman/
https://pandas.pydata.org/about.html#community
https://filterpy.readthedocs.io/en/latest/index.html
https://towardsdatascience.com/not-1-not-2-but-5-ways-to-correlate-6ac92cf42f0f
https://matplotlib.org/
https://seaborn.pydata.org/
https://keras.io/
https://www.tensorflow.org/about
https://www.anaconda.com/distribution/#download-section
https://hackernoon.com/the-mvc-for-machine-learning-data-model-learner-dml-8127d793f930
https://jsoup.org/
https://www.python.org/dev/peps/pep-0008/#introduction

PSU-BD-CSSE-Class2020-Sec-001-Team-015

[22] Byrne, M.P. and Jorns, B.A., “Data-driven Models for the Effects of Background Pressure
on the Operation of Hall Thrusters,” IEPC Paper 2019-630
[23] Chadha, H. S. (2019, November 8). Extended Kalman Filter: Why do we need an Extended
Version?. Accessed February 14, 2020,
https://towardsdatascience.com/extended-kalman-filter-43e52b16757d
[24] Samsuri, S. B., Zamzuri, H., et. al. (2015, September) COMPUTATIONAL COST
ANALYSIS OF EXTENDED KALMAN FILTER IN SIMULTANEOUS LOCALIZATION &
MAPPING (EKF-SLAM) PROBLEM FOR AUTONOMOUS VEHICLE. Accessed 4/19/20,
http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0915_2637.pdf
[25] Spyder Project Contributors, Spyder-Unittest. Accessed 11/19/19,
https://github.com/spyder-ide/spyder-unittest
[26] Arkes, H. R., & Blumer, C. (1985), The psychology of sunk costs. Organizational Behavior
and Human Decision Processes, 35, 124-140.

63

https://towardsdatascience.com/extended-kalman-filter-43e52b16757d
http://www.arpnjournals.com/jeas/research_papers/rp_2015/jeas_0915_2637.pdf
https://github.com/spyder-ide/spyder-unittest

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

i

Introduction

The following appendix discusses the results obtained from utilizing the Hall Thruster Data

Analysis Tool. First, the experimental setup will be discussed on how the machine learning

models were trained and evaluated. Then, an analysis of the various correlation figures and

results obtained from running the Kalman filter and creating the Deep Belief Network (DBN)

models.

Experimental Setup

The DBN models were trained under varying conditions. These conditions include the number of

attributes within the data set, the threshold for the Principal Component Analysis (PCA), the

number of original records, the number of generated records from the Kalman filter, what type of

Kalman filter was being used to generate the data records, the neuron count, the number of

epochs, the batch size, the optimizer, and the loss function.

The first property that can be varied when training models is to vary the number of attributes

within the data set. Initially, there are a total of 28 attributes within the data set and they are as

followed:

• Discharge Power, kW • Discharge Voltage, V

• Discharge Current, A • Magnet Current, A

• Cathode Flow Rate, mg/s • Anode Flow Rate, mg/s

• Total Flow Rate, mg/s • Tank Pressure, Torr Xe

• Thrust, mN • Specific Impulse, sec

• Thruster Efficiency, % • Access Diameter (m)

• Access Length (m) • Base (No Load) Pressure, Torr

• Diameter (m) • Length (m)

• Pumping Speed (kL/s Xenon) • Cryopump Surface Area (m^2)

• Diffusion Pump Count • Diffusion Pump Length (in)

• Diffusion Pump Speed (l/s air) • Root Blowers Count

• Blow Rate (ft^3/min) • Mechanical Pump Count

• Mechanical Pump Rate (ft^3/min) • Test Port Diameter (m)

• Test Port Length (m) • Test Port Count

This data set, which will be referred to as DS1 (data set 1), was further reduced to 25 attributes to

examine the impact of removing different attributes to the system. DS2 removes the Test Port

Diameter (m), Test Port Length (m), and Test Port Count. The data set was reduced further to 18

attributes and is known as DS3. The attributes that were further removed in DS3 were the

Diffusion Pump Count, the Diffusion Pump Length (m), and the Diffusion Pump Speed (l/s air).

This was later reduced to the final set, DS4, with 16 attributes. The large bulk of the experiments

utilized DS4, as many of the original 28 attributes were determined to pose little to no impact on

the system or had little variation in their distributions. The final set of attributes used in the

experiments were as follows:

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

ii

• Discharge Power, kW • Discharge Voltage, V

• Discharge Current, A • Magnet Current, A

• Cathode Flow Rate, mg/s • Anode Flow Rate, mg/s

• Total Flow Rate, mg/s • Tank Pressure, Torr Xe

• Thrust, mN • Specific Impulse, sec

• Thruster Efficiency, % • Cryopump Surface Area (m^2)

• Pumping Speed (kL/s Xenon) • Base (No Load) Pressure, Torr

• Diameter (m) • Length (m)

Principal Component Analysis (PCA) is used within the system to reduce the dimensional

complexity of the data set being used. For example, DS4 can be reduced from 16 attributes to 10

utilizing PCA. This can reduce the noise within the data set, as well as reduce the time needed to

generate the data records and train machine learning models. This is controlled through the PCA

threshold parameter, which specifies the sum percentage of the principal components of the PCA

reduced data set. For example, a PCA threshold of 0.9 will produce a PCA model with several

components, where the sum of each component percentage contribution to the model will equal

the PCA threshold. Utilizing this parameter, the machine learning models produced can be

further optimized.

During the data collection phase of the project, only approximately 400 data records were

collected from various abstracts involving SPT-100 and SPT-140 thrusters. This metric

represents the original record count used in the Kalman filter. This filter is then used to generate

data records, known as the generated data records. Using these 400 original records and the

attributes from one of the four provided data sets, 81,000 new records were generated using the

Kalman filter. It’s important to note that the number of generated data records is independent of

the number of attributes; the number of generated records is only dependent on the original

record count.

Fig. RA-1. Examples of linear distributions found within the attributes.

For the Kalman filter, two were implemented within the Hall Thruster Data Analysis Tool. The

first is the regular Kalman filter, while the other was the Extended Kalman filter. A normal

Kalman filter can handle linearly related attributes. Some examples of these relationships are

shown in Fig RA-1. The Extended Kalman filter was implemented due to the presence of

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

iii

nonlinear attributes within the data set, as seen in Fig. RA-2. The standard Kalman filter does not

handle nonlinear relationships well, so the Extended Kalman filter was implemented to handle

those nonlinearly related attributes.

Fig. RA-2. Examples of nonlinear distributions found within the attributes.

Lastly, there are a few parameters that are changed during the training of the machine learning

models. The first is the number of epochs that the model is trained for. An epoch is one complete

presentation of the data set to the machine learning model. The second is the neuron count,

which defines the structure of the model. Next is the batch size, or how many data records are

being shown to the model at one time in the current epoch. The last two are the optimizer

technique and the loss function used by the model. The optimizer determines how the model

parameters will change after each epoch, while the loss function is used to calculate the

performance of the machine learning model. These parameters are necessary not only to train

accurate models quickly and effectively but to ensure that the model is not over or under-trained.

The experiments performed to vary the following parameters to produce different machine

learning models of varying accuracies. Of these parameters, many remain the same, such as the

original record count, generated record count, and loss metric do not vary. This is since to

change the original record count would mean finding more records or create subsets of the

original raw data set. The loss function was not changed to focus on varying other parameters

instead.

Results Analysis

Throughout the CapStone project, a total of 26 experiments were conducted to produce the most

accurate model possible. Table RA-1 below showcases the results of these 26 experiments. Of

these 26 DBN models produced, 9 were able to score an evaluation accuracy of over 90%,

meaning the model was over 90% accurate in evaluating the original data set containing the 400

records. Most models, however, scored in the 97-99% range when evaluating against the test set

derived from the 81,000 generated data records.

The experiments can be divided into two categories, separated by the black line shown in Table

RA-1. These top experiments all have their PCA threshold as 1 to indicate that no PCA was used

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

iv

to create the model. This was because the PCA features were not fully implemented nor needed

at that time. While the PCA was being implemented, the team studied the differences between

using the Kalman filter versus the Extended Kalman filter, as well as configuring the neuron

counts to optimize the evaluation accuracy. Of these models, the highest-scoring model earned

90%, while most models scored around 50% or below.

Table RA-1. The results table from training Deep Belief Network Models

From this point, the team decided that the Extended Kalman filter would be better suited for

more experiments to optimize accuracy. It’s important to note, however, that experiment 1 does

not have an evaluation accuracy. This is because the model produced was a test to determine if

the system was functional enough to begin experimenting. The evaluation accuracy was recorded

starting with experiment 2.

In the bottom portion of the experiments, the team kept the filter type the same, while examining

the impact of using Principal Component Analysis on the system. To control how the PCA

reduced the data, the threshold parameter was included to track the results. By changing this

value, the PCA model will reduce the data based on the threshold, and the result will be a data

set with several columns equal to the ‘AttributesAfterPCA’ column in Table RA-1. Experiments

11 through 18 were conducted to determine the impact of the threshold. Utilizing DS4 primarily,

the team found that utilizing a PCA threshold of around 0.9 produced decently accurate models.

After determining approximately what value was appropriate for the PCA threshold, the neuron

layer counts were varied to determine optimal values as well. The team found that with a lower

neuron count, as seen in experiments 19 & 21, the evaluation accuracy dropped to lower

percentages as opposed to the higher neuron counts seen in other experiments like experiment

20. Overall, at least 512 neurons for the first kind of layer and 256 neurons for the second kind of

layer proved effective in fitting the 81,000 records to the model during training. Due to time

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

v

constraints, the optimizer and loss functions remained mostly the same. The only exceptions

were in experiments 1 and 2, which used the Stochastic Gradient Descent (SGD) over the over

experiments, which used the Adam Optimizer.

To help examine the results within the DBN results table, several types of figures and graphs

were created to facilitate the analysis. These plots include scatter plots, a correlation heatmap

between the variables, Lasso Regression analysis on the system, Ridge Regression analysis on

the system, and graphs depicting the principal components from PCA.

To examine the correlations within the system, a correlation heatmap displaying the Pearson

correlation values between all variables was created. This heatmap is displayed below in Fig.

RA-3.

Fig. RA-3. A Heatmap of the Pearson correlations between all attributes in the system

Looking at the correlation heatmap shown in Fig. RA-3, there are several attributes with high

correlations, specifically amongst the facility parameters. As discussed previously, these facility

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

vi

parameters were removed due to these high correlations, since many of these parameters had

little varied data, which is not very useful for creating accurate models. These variables could be

included if more values are obtained. Regardless, the heatmap shown in Fig. RA-3 played a vital

role in reducing the original 28 attributes down to the 16 attributes seen in DS4.

Lasso regression and Ridge regression were also performed to produce more correlations for

examinations. Utilizing Ridge regression and Lasso regression, the beta coefficients were

calculated for DS4, as seen in Fig. RA-4. Within this figure, many of the beta values are greater

than 1, indicating that the system is complex and is at risk for overfitting. To ensure that no

overfitting is occurring, more experimentation is necessary for utilizing more new data records to

form new data sets. In the Ridge regression graph, the tank pressure has a very high beta value

when compared to the thruster efficiency.

Fig RA-4. Ridge regression beta values with an alpha coefficient of 1*10-15.

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

vii

Fig RA-5. Lasso regression beta values with an alpha coefficient of 0.025.

The Lasso regression produced slightly different results, as seen above in Fig. RA-5. The beta

value for the thruster efficiency is gone and instead is on the specific impulse. Similarly, the beta

values are all above 1, indicating the system is complex and at risk of overfitting.

Moving onto the graphs created by the Principal Component Analysis (PCA), they go over the

feature influence scores among the different principal components. Looking at Fig RA-6, this

principal component accounts for 62.58% of the PCA model used to perform the reduction,

making it the most influential component. Within Fig RA-6, it’s clear that the pumping speed,

specific impulse, and thrust played the biggest roles in the reduction. A possible improvement to

the model then could be to see the impact of removing the pumping speed to see how it plays a

role in training machine learning models.

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

viii

Fig RA-6. Feature Influence Scores of Principal Component 1.

Fig RA-7. Feature Influence Scores of Principal Component 2.

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

ix

Fig RA-8. Feature Influence Scores of Principal Component 3.

Fig RA-7 shows principal component 2, which accounts for 33.89% of the PCA model. Similar

to the first component, there is a positive influence score from the pumping speed, while there is

a large negative score from the specific impulse, with smaller negative scores for the thrust and

discharge voltage.

The last PCA graph comes from principal component 3, which accounts for 3.12% of the model.

Similar to the other PCA graphs, the main attributes are the discharge voltage, thrust, specific

impulse, and pumping speed. However, the thrust has the highest score and is positive, as

opposed to the other graphs. Looking at these three PCA graphs, it’s clear that more research into

the pumping speed, thrust, specific impulse, and discharge voltage is necessary to increase the

accuracy of future models.

Overall, there are several more aspects of the model that can be improved based on the results

from Table RA-1, and the various figures shown throughout this analysis. For example,

backward attribute selection can be used to examine how the specific impulse impacts the system

and training models. Additionally, more graphs can be generated utilizing the Hall Thruster Data

Analysis Tool for further analysis.

Appendix RA: Results Analysis Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

x

Conclusion

Throughout this project, several experiments were conducted to optimize the accuracy in training

DBN models, many of which obtained an evaluation accuracy against the original data set of

around 90% or more.

The PCA graphs, as well as the Lasso and Ridge graphs, leave questions about how certain

attributes impact the system. For example, the tank pressure needs to be further researched from

the Ridge regression graph from Fig RA-4, and based on the PCA graphs, the pumping speed,

thrust, specific impulse, and discharge voltage all play key roles in forming the PCA models

used to reduce the complexity of the data set. Researching the impact of these attributes may be

useful.

There are several aspects to the experiments that can be improved to possibly improve the

accuracy of the machine learning models. For instance, backward attribute selection may be

utilized to further determine which attributes can be removed from the system. One attribute can

be removed at a time to observe the impact on the system. Right now, the data set with the

lowest number of attributes is DS4 with 16. This data set can be reduced further to examine the

impact on the system. Likewise, different loss functions and optimizers can be implemented to

examine their impacts as well. Looking back at Fig. RA-3, the correlation heatmap, some

variables can also be removed based on the correlations. For instance, the discharge current has a

high correlation to the discharge power, meaning that one of those variables can be removed to

potentially improve the system. This is just one possible improvement among others.

Additionally, different filters can be used besides the Kalman filter and Extended Kalman filter

to generate the data records, or if enough data records are provided initially, then the filter will

not be needed to generate records at all. It’s also possible that the solutions provided do not scale

to larger data sets that are independent of the system. For instance, a model with a 95% accuracy

rating against the initial raw data set may score significantly lower when evaluated against these

different, larger data sets. The only way to determine if this is true is to evaluate the models

against more data sets to confirm their results.

Different types of machine learning models such as those in the reinforcement learning category

could also be implemented to attempt to minimize the sensitivities. Other algorithms could

additionally be implemented in substitute of the DBN. Based on the approximately 400 data

records collected, the team was able to produce a model with a 97% accuracy rate. Although this

percentage can be improved, this is a significant step in helping to understand the impact of these

facility parameters on SPT-100 and SPT-140 thrusters.

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	1	/	20

Table	4.7.	User	Functional	Requirements:	UF-A

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UF-A Type Functional Non-Functional

User ☒ ☐
System ☐ ☐

Creation:

Modification:

Description:
The	team	will	devise	a	method	to	predict	and/or
correct	for	the	sensitivity	of	the	thruster	output
parameters	(i.e.	HET	performance,	operation,	and
plume	parameters).

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Refined	Into: SF-A-01,	SF-A-03,	SF-A-04,	SF-A-05,	SF-A-06

Justify	why	UF-A	can	be	completely
covered	by	SF-A-01,	SF-A-03,	SF-A-
04,	SF-A-05,	SF-A-06

The	system	has	various	performance	and	operation	parameters	that	need
to	be	modeled.	The	first	few	requirements	discuss	the	main	parameters
the	system	needs	to	predict.	The	last	requirements	discuss	the	various
methods	used	to	make	these	predictions.

Traceability:
Use	cases	cf. UC-001,	UC-004,	UC-005

Test	cases	cf. TC-003,	TC-004,	TC-005,	TC-006,	TC-007,	TC-018,	TC-019,	TC-020,	TC-
021,	TC-025,	TC-028,	TC-029,	TC-037,	TC-038,	TC-039

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.8.	User	Functional	Requirements:	UF-B

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UF-B Type Functional Non-Functional

User ☒ ☐
System ☐ ☐

Creation:

Modification:

Description:

The	team	must	include	a	report	detailing	the	results	of
the	machine	learning	analysis	and	data	mining
techniques	including	utilized	data	sets,	any
models/analyses	generated	by	the	analysis	and
techniques,	and	an	evaluation	of	the	model	accuracy
and	predictive	capability.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Refined	Into: SF-B-01,	SF-B-02,	SF-B-03,	SF-B-04,	SF-B-05

Justify	why	UF-B	can	be	completely
covered	by	SF-B-01,	SF-B-02,	SF-
B-03,	SF-B-04,	SF-B-05

ASU	requires	a	report	to	be	generated	with	the	training	data,	models	and
analysis	generated	by	the	system's	training,	and	the	predictive	capability
and	accuracy	from	each	model	trained.	These	requirements	discuss	the
various	pieces	of	information	that	will	be	included	in	the	final	report	to
ASU.

Traceability:
Use	cases	cf. UC-001,	UC-003,	UC-004,	UC-005

Test	cases	cf. TC-003,	TC-005,	TC-006,	TC-007,	TC-014,	TC-015,	TC-018,	TC-022,	TC-
023,	TC-024,	TC-025,	TC-026,	TC-036,	TC-037,	TC-038

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	2	/	20

Table	4.9.	User	Functional	Requirements:	UF-C

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UF-C Type Functional Non-Functional

User ☒ ☐
System ☐ ☐

Creation:

Modification:

Description:
The	team	should	gather	information	and	data	from	HET
vacuum	test	facilities	that	tested	Hall	thrusters	in
order	to	build	the	data	set	for	their	system.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Refined	Into: SF-C-01,	SF-C-03,	SF-C-04,	SF-C-05,	SF-C-06,	SF-C-07,	SF-C-08

Justify	why	UF-C	can	be	completely
covered	by	SF-C-01,	SF-C-03,	SF-C-
04,	SF-C-05,	SF-C-06,	SF-C-07,	SF-
C-08

To	successfully	gather	the	data,	it	must	be	extracted	from	the	source(s),
then	altered	into	a	consistent	format	so	it	can	be	properly	analyzed	to
extract	information.	This	involves	removing	unnecessary	data	like
outliers	and	missing	values,	as	well	as	normalizing	or	standardizing	the	data
so	useful	information	can	be	extracted.

Traceability:
Use	cases	cf. UC-001,	UC-002

Test	cases	cf. TC-001,	TC-002,	TC-008,	TC-009,	TC-010,	TC-011,	TC-012,	TC-013,	TC-
017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.10.	User	Functional	Requirements:	UF-D

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UF-D Type Functional Non-Functional

User ☒ ☐
System ☐ ☐

Creation:

Modification:

Description:
The	team	should	utilize	data	mining	techniques	to
discover	previously	undiscovered	correlations	within
public	data	sets.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Refined	Into: SF-D-01,	SF-D-02,	SF-D-03,	SF-D-04,	SF-D-05

Justify	why	UF-D	can	be	completely
covered	by	SF-D-01,	SF-D-02,	SF-
D-03,	SF-D-04,	SF-D-05

There	are	various	techniques	available	to	discovering	correlations	within
the	data	set	being	used.	These	techniques	include	Pearson	correlation
analysis,	correlation	matrix,	PCA,	and	Lasso	Regression.	These	various
techniques	will	provide	correlations	between	the	variables	within	the
system.

Traceability:
Use	cases	cf. UC-001,	UC-003

Test	cases	cf. TC-014,	TC-015,	TC-022,	TC-023,	TC-024,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	3	/	20

Table	4.11.	User	NonFunctional	Requirements:	UP-02

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UP-02 Type Functional Non-Functional

User ☐ ☒
System ☐ ☐

Creation:

Modification:

Description:

The	client	wants	the	system	to	utilize	published	data
sets	from	HET	Facilities	that	used	SPT-140	and/or
SPT-100	Hall	thrusters	and	If	time	permits,	the	teams
should	try	to	incorporate	data	from	other	thruster
models.

Product	(sub-type	below)

Usability	Requirements

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Refined	Into: SP-02-01,	SP-02-02

Justify	why	UP-02	can	be
completely	covered	by	SP-02-01,
SP-02-02

The	data	set	must	first	be	initially	restricted	to	SPT-100	&	SPT-140	to
find	an	optimal	solution	for	the	thruster	types	being	used,	which	is
requirement	UP-02-01.	UP-02-02	will	then	extend	the	data	set	restriction
if	time	is	available.	These	2	thus	fit	the	user	requirement.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-001,	TC-034

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.12.	User	NonFunctional	Requirements:	UO-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UO-01 Type Functional Non-Functional

User ☐ ☒
System ☐ ☐

Creation:

Modification:

Description:
The	user	needs	the	machine	learning	model	to	be	able
to	run	on	the	computers	in	HET	facilities	so	the
software	can	be	accessible	by	anybody	who	needs	it.

Organizational	(sub-type	below)

Operational	Requirements

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Refined	Into: SO-01-01,	SO-01-02,	SO-01-03

Justify	why	UO-01	can	be
completely	covered	by	SO-01-01,
SO-01-02,	SO-01-03

The	system	needs	to	be	able	to	run	on	the	computers	in	the	HET
facilities,	and	since	the	implementation	will	be	using	Python,	all	that	needs
to	be	considered	are	the	OS	types	the	software	will	run	on.	The	three
system	requirements	cover	the	three	primary	OS	types	used:	Linux,
Windows	10,	MacOS.

Traceability: Use	cases	cf. N/A
Test	cases	cf. TC-031,	TC-032,	TC-033

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	4	/	20

Table	4.13.	User	NonFunctional	Requirements:	UE-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: UE-01 Type Functional Non-Functional

User ☐ ☒
System ☐ ☐

Creation:

Modification:

Description:
Participants	may	not	be	citizens	of	the	People’s
Republic	of	China	(PRC),	per	Public	Laws	112-10,
Section	1340(a)	and	112-55,	Section	536.

External	(sub-type	below)
Legislative	Requirements	on
Safety/Security

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Refined	Into: SE-01-01

Justify	why	UE-01	can	be
completely	covered	by	SE-01-01

The	law	simply	states	that	the	application	cannot	be	developed	by
somebody	from	the	PRC,	thus	this	requirement	won't	allow	the	system	to
be	worked	on	by	those	individuals.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-030

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.14.	System	Functional	Requirements:	SF-A-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-A-01 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	predict	the	thrust	in	units	of	newtons
the	HET	is	outputting.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-A

Justify	why	meeting	SF-A-01	can
contribute	to	the	fulfilment	of	UF-A

One	of	the	parameters	that	is	changing	as	a	function	of	the	background
pressure	and	facility	parameters	is	the	thrust	of	the	HET.	To	correctly
predict	the	sensitivity	of	the	thruster	output	parameters,	thrust	must	be
predicted.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. TC-006,	TC-018,	TC-025,	TC-028,	TC-038

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	5	/	20

Table	4.15.	System	Functional	Requirements:	SF-A-03

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-A-03 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	predict	the	thruster	efficiency	as	a
percentage.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-A

Justify	why	meeting	SF-A-03	can
contribute	to	the	fulfilment	of	UF-A

One	of	the	parameters	that	changes	as	a	function	of	facility	parameters
and	background	pressure	is	the	discharge	current	oscillation,	which	is
largely	disputed	how	it	changes.	Hence,	the	model	should	be	able	to
predict	the	levels.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. TC-006,	TC-018,	TC-025,	TC-028,	TC-038

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.16.	System	Functional	Requirements:	SF-A-04

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-A-04 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	predict	the	specific	impulse	in
seconds	the	thruster	is	using.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-A

Justify	why	meeting	SF-A-04	can
contribute	to	the	fulfilment	of	UF-A

One	of	the	parameters	that	varies	as	a	result	of	changing	background
pressures	and	facility	parameters	is	the	specific	impulse	that	allows	the
thruster	to	operate	with	low	fuel	usage.	Part	of	predicting	the	operation
and	performance	of	the	thruster	is	knowing	the	specific	impulse,	hence	it
must	be	calculated.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. TC-006,	TC-018,	TC-025,	TC-028,	TC-038

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	6	/	20

Table	4.17.	System	Functional	Requirements:	SF-A-05

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-A-05 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	implement	a	deep	belief	network
(DBN)	to	predict	different	thruster	output	parameters.

Priority: Highest High Medium ✔	Low Lowest
This	Req.	is	Engineered	From: UF-A

Justify	why	meeting	SF-A-05	can
contribute	to	the	fulfilment	of	UF-A

The	goal	is	to	devise	a	method	to	accurately	predict	the	output
parameters.	The	model	will	allow	to	make	predictions	of	what	the	values
would	be,	so	training	a	DBN	model	may	prove	beneficial	to	achieving	this
goal.

Traceability:
Use	cases	cf. UC-001,	UC-005

Test	cases	cf. TC-003,	TC-004,	TC-005,	TC-006,	TC-007,	TC-018,	TC-028,	TC-038,	TC-
039

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.18.	System	Functional	Requirements:	SF-A-06

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-A-06 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	utilize	a	Kalman	filter	to	estimate	the
values	of	the	output	parameters.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-A

Justify	why	meeting	SF-A-06	can
contribute	to	the	fulfilment	of	UF-A

An	efficient	method	of	analyzing	the	data	is	to	use	a	Kalman	filter,	which	is
capable	of	accurate	predictions	when	dealing	with	systems	with	high
amounts	of	uncertainty.	Using	the	filter,	we	will	be	able	to	obtain	more
data	points,	make	estimates	of	the	predictions,	and	even	potentially	train
machine	learning	models.

Traceability:
Use	cases	cf. UC-001,	UC-004
Test	cases	cf. TC-019,	TC-020,	TC-021,	TC-025,	TC-028,	TC-029,	TC-037

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	7	/	20

Table	4.19.	System	Functional	Requirements:	SF-B-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-B-01 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description:
The	system	shall	record	the	results	for	running	the
machine	learning	model	or	data	mining	technique	to
local	storage.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B

Justify	why	meeting	SF-B-01	can
contribute	to	the	fulfilment	of	UF-B

The	overall	goal	of	the	requirement	is	to	provide	ASU	with	a	report
explaining	how	effective	the	machine	learning	models	were.	A	report
generator	would	be	able	to	quickly	compile	and	print	out	the	information
required	to	be	handed	over.

Traceability:
Use	cases	cf. UC-001,	UC-004,	UC-005

Test	cases	cf. TC-006,	TC-018,	TC-023,	TC-024,	TC-025,	TC-026,	TC-036,	TC-038,	TC-
039

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.20.	System	Functional	Requirements:	SF-B-02

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-B-02 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	record	the	training	data	used	to	train
a	model	for	the	report.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B
Justify	why	meeting	SF-B-02	can
contribute	to	the	fulfilment	of	UF-B

The	training	data	is	needed	help	evaluate	the	model	and	generate	any
analysis.

Traceability:
Use	cases	cf. UC-001,	UC-004
Test	cases	cf. TC-005,	TC-018,	TC-037,	TC-038

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	8	/	20

Table	4.21.	System	Functional	Requirements:	SF-B-03

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-B-03 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description:
The	system	shall	record	the	machine	learning	model
type	being	used	and	the	resulting	analysis	from	the
model	for	the	report.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B

Justify	why	meeting	SF-B-03	can
contribute	to	the	fulfilment	of	UF-B

Part	of	evaluating	the	model's	effectiveness	is	knowing	what	type	of
model	was	used,	and	the	results	of	the	trained	model.	Thus,	these	pieces
of	information	need	to	be	recorded	to	be	inserted	into	the	report.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. TC-003,	TC-007,	TC-018,	TC-038,	TC-039

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.22.	System	Functional	Requirements:	SF-B-04

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-B-04 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	calculate	the	predictive	capability	of
the	model/technique	to	include	in	the	report.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B

Justify	why	meeting	SF-B-04	can
contribute	to	the	fulfilment	of	UF-B

Part	of	the	report	is	knowing	how	effective	each	machine	learning
model/data	mining	technique	is,	so	the	best	technique	is	chosen	for	the
job	of	predicting	the	sensitivity.	Hence,	the	accuracy	and	capability	need
to	be	calculated	and	included	in	the	report.

Traceability:
Use	cases	cf. UC-001,	UC-005
Test	cases	cf. TC-006,	TC-018,	TC-025,	TC-038

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	9	/	20

Table	4.23.	System	Functional	Requirements:	SF-B-05

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-B-05 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	record	the	correlation	results	to	be
included	in	the	report.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-B

Justify	why	meeting	SF-B-05	can
contribute	to	the	fulfilment	of	UF-B

Besides	results	from	machine	learning	models,	ASU	would	like	us	to
include	anything	we	deem	relevant	in	this	problem's	domain.	This	includes
the	results	of	the	correlation	analysis,	which	will	give	us	information	on
how	different	system	parameters	will	relate	to	each	other.

Traceability:
Use	cases	cf. UC-001,	UC-003
Test	cases	cf. TC-014,	TC-015,	TC-023,	TC-024,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.24.	System	Functional	Requirements:	SF-C-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-01 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	read	in	the	data	to	be	used	from	a
.CSV	file.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-01	can
contribute	to	the	fulfilment	of	UF-C

The	first	step	to	process	the	data	for	machine	learning	algorithms/data
mining	techniques	is	to	read	the	data	into	the	system	for	cleaning	and
processing.	This	will	be	done	by	accepting	.CSV	files	containing	all	of	the
different	parameters	needed.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-001,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	10	/	20

Table	4.25.	System	Functional	Requirements:	SF-C-03

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-03 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	remove	a	column	of	data	if	more	than
60%	of	the	column's	values	are	missing.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-03	can
contribute	to	the	fulfilment	of	UF-C

While	we	don't	want	to	throw	away	any	data	we	pull	from	any	abstracts,
it	might	turn	out	a	variable	we're	tracking	has	many	values	missing.	In	this
case,	we	should	preserve	the	raw	data,	but	exclude	that	variable	for	a
separate	analysis.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-009,	TC-010,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.26.	System	Functional	Requirements:	SF-C-04

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-04 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	may	remove	the	nominal	data	columns.

Priority: Highest High ✔	Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-04	can
contribute	to	the	fulfilment	of	UF-C

If	the	system	is	not	looking	at	nominal	data	groups	(things	like	labels	with
no	ordinance),	then	they	should	be	removed	unless	clustering	is	being
performed.	This	action	is	necessary	to	clean,	transform,	and	reduce	the
data	into	an	acceptable	form.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-010,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	11	/	20

Table	4.27.	System	Functional	Requirements:	SF-C-05

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-05 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	replace	missing	values	with	a	result
from	an	appropriate	mathematical	equation.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-05	can
contribute	to	the	fulfilment	of	UF-C

If	a	column	is	missing	one	or	two	values,	it	wouldn't	hurt	to	replace	those
values	with	a	mean,	median,	or	mode	depending	on	the	type	of	data	that
column	is.	Since	nominal	data	cannot	be	compared	against	each	other,
missing	values	will	be	replaced	with	the	mode.	Ordinal	data	will	be
replaced	with	the	median.	Interval	and	ratio	data	will	be	replaced	with
either	the	median	or	mean.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-011,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.28.	System	Functional	Requirements:	SF-C-06

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-06 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	remove	any	outliers	within	the	data
set.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-06	can
contribute	to	the	fulfilment	of	UF-C

Outliers	have	the	potential	to	skew	results	when	utilizing	machine
learning	algorithms	or	data	mining	techniques.	To	eliminate	this	unwanted
noise,	PCA	and	quartile	ranges	can	be	implemented	to	identify	points	that
are	unlikely	to	be	produced,	the	outliers.	Handling	these	values	will
improve	the	quality	of	information	within	the	data	set	for	analysis.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-012,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	12	/	20

Table	4.29.	System	Functional	Requirements:	SF-C-07

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-07 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	normalize	each	column	in	the	data	set
so	all	values	are	between	0	and	1.

Priority: Highest High ✔	Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-07	can
contribute	to	the	fulfilment	of	UF-C

If	two	variables	are	on	different	scales,	like	0	to	10	and	1000	to	3000,
many	machine	learning	algorithms	and	data	mining	techniques	will	struggle
to	identify	differences	in	the	smaller	scales.	To	solve	this,	we	can
normalize	the	data	to	values	between	0	and	1.	This	way,	all	the	variables
will	be	on	the	same	scale	so	any	analysis	will	be	able	to	find	differences
easier.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-002,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.30.	System	Functional	Requirements:	SF-C-08

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-C-08 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description:
The	system	shall	standardize	each	column	in	the	data
set	so	all	variables	have	a	mean	of	0	and	standard
deviation	of	1.

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UF-C

Justify	why	meeting	SF-C-08	can
contribute	to	the	fulfilment	of	UF-C

If	two	variables	are	on	different	scales,	like	0	to	10	and	1000	to	3000,
many	machine	learning	algorithms	and	data	mining	techniques	will	struggle
to	identify	differences	in	the	smaller	scales.	To	solve	this,	we	can
standardize	the	data	so	all	columns	have	a	mean	of	0	and	standard	deviation
of	1.	This	will	allow	us	to	easily	identify	outliers,	as	well	as	look	at	the
variations	between	the	variables	for	more	beneficial	analysis	and	solve
the	scaling	issue.	This	is	the	preferred	method	over	normalization,	but
both	will	be	implemented	for	differing	reasons.

Traceability:
Use	cases	cf. UC-001,	UC-002
Test	cases	cf. TC-013,	TC-017,	TC-027,	TC-035

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	13	/	20

Table	4.31.	System	Functional	Requirements:	SF-D-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-D-01 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	perform	Pearson	correlation	analysis
on	the	data	set.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-D

Justify	why	meeting	SF-D-01	can
contribute	to	the	fulfilment	of	UF-D

A	way	to	extract	correlations	from	data	is	to	use	Pearson	correlation
analysis,	which	measures	the	strength	of	the	linear	relationship	between
two	variables.	This	will	show	a	basic	analysis	of	the	correlations	within
the	data.

Traceability:
Use	cases	cf. UC-001,	UC-003
Test	cases	cf. TC-022,	TC-023,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.32.	System	Functional	Requirements:	SF-D-02

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-D-02 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	generate	a	correlation	matrix	to
show	the	correlations	between	all	of	the	variables.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-D

Justify	why	meeting	SF-D-02	can
contribute	to	the	fulfilment	of	UF-D

A	correlation	matrix	can	be	used	when	multiple	variables	are	in	a	system
to	show	all	of	the	correlations	against	each	other	in	the	form	of	a	heat
map.	This	can	be	useful	to	examine	the	patterns	between	the
correlations	and	potentially	eliminate	redundant	data	and	extract	useful
information.

Traceability:
Use	cases	cf. UC-001,	UC-003
Test	cases	cf. TC-002,	TC-023,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	14	/	20

Table	4.33.	System	Functional	Requirements:	SF-D-03

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-D-03 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	use	Principal	Component	Analysis
(PCA)	to	identify	correlations	within	the	data.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-D

Justify	why	meeting	SF-D-03	can
contribute	to	the	fulfilment	of	UF-D

Using	PCA,	the	system	will	be	identify	various	correlations	by	measuring
their	dimensionality,	then	determining	the	level	of	influence	the	feature
has	on	the	data	set.	Negative	influences	will	correlate	together	while
positive	influences	will	also	correlate	together.

Traceability:
Use	cases	cf. UC-001,	UC-003
Test	cases	cf. TC-008,	TC-014,	TC-015,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.34.	System	Functional	Requirements:	SF-D-04

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-D-04 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	calculate	Lasso	Regression
correlations	within	the	data	set.

Priority: Highest High ✔	Medium Low Lowest
This	Req.	is	Engineered	From: UF-D

Justify	why	meeting	SF-D-04	can
contribute	to	the	fulfilment	of	UF-D

Lasso	Regression	is	a	variant	of	ordinary	least	square	(OLS)	to	calculate
correlations.	Using	this	method	may	show	the	team	some	new
correlations	that	other	techniques	did	not	show.

Traceability:
Use	cases	cf. UC-001,	UC-003
Test	cases	cf. TC-024,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	15	/	20

Table	4.35.	System	Functional	Requirements:	SF-D-05

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SF-D-05 Type Functional Non-Functional

User ☐ ☐
System ☒ ☐

Creation:

Modification:

Description: The	system	shall	generate	scatter	plots	displaying	each
variable	against	every	other	variable.

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UF-D

Justify	why	meeting	SF-D-05	can
contribute	to	the	fulfilment	of	UF-D

One	way	to	analyze	the	relationship	between	the	variables	is	to	graph
scatter	plots	comparing	each	variable	against	another	variable.	This	will
show	linear	and	nonlinear	relationships	within	the	data	for	further
research.

Traceability:
Use	cases	cf. UC-001,	UC-003
Test	cases	cf. TC-022,	TC-026,	TC-036

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.36.	System	NonFunctional	Requirements:	SP-02-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SP-02-01 Type Functional Non-Functional

User ☐ ☐
System ☐ ☒

Creation:

Modification:

Description: The	system	shall	utilize	data	from	HET	Facilities	that
utilized	SPT-140	and/or	SPT-100	Hall	thrusters.

Product	(sub-type	below)
Usability	Requirements

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UP-02

Justify	why	meeting	SP-02-01	can
contribute	to	the	fulfilment	of	UP-
02

The	data	set	needs	to	use	data	from	SPT-140	and	SPT-100	Hall.	The
reason	for	this	is	because	the	SPT-140	is	the	thruster	being	used	on	the
Psyche	space	craft,	while	the	SPT-100	is	the	precursor	to	the	SPT-140
thruster.	Thus,	this	requirement	is	a	constraint	that	restricts	our	data	set
to	these	thruster	types.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-001,	TC-034

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	16	/	20

Table	4.37.	System	NonFunctional	Requirements:	SP-02-02

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SP-02-02 Type Functional Non-Functional

User ☐ ☐
System ☐ ☒

Creation:

Modification:

Description: The	system	may	include	data	pertaining	to	other	Hall
thruster	types.

Product	(sub-type	below)
Usability	Requirements

Priority: Highest High Medium Low ✔	Lowest
This	Req.	is	Engineered	From: UP-02

Justify	why	meeting	SP-02-02	can
contribute	to	the	fulfilment	of	UP-
02

We	must	first	focus	on	the	two	Hall	thruster	types	being	used,	then	if
time	is	permitted	after	accomplishing	the	other	requirements,	we	should
expand	to	other	thruster	types	to	see	if	similar	results	can	be	obtained.
Since	it's	not	necessary	to	have	these	other	types,	this	requirement	is	of
the	lowest	priority.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-001

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.38.	System	NonFunctional	Requirements:	SO-01-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SO-01-01 Type Functional Non-Functional

User ☐ ☐
System ☐ ☒

Creation:

Modification:

Description: The	system	shall	run	on	Linux	distributions. Organizational	(sub-type	below)
Operational	Requirements

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UO-01
Justify	why	meeting	SO-01-01	can
contribute	to	the	fulfilment	of	UO-
01

Since	the	system	needs	to	be	run	on	any	computer,	the	main	OS	types
that	need	to	be	considered	are	Linux,	Windows,	and	MacOS.	This
requirement	deals	with	Linux.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-032

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	17	/	20

Table	4.39.	System	NonFunctional	Requirements:	SO-01-02

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SO-01-02 Type Functional Non-Functional

User ☐ ☐
System ☐ ☒

Creation:

Modification:

Description: The	system	shall	run	on	Windows	10	operating
systems.

Organizational	(sub-type	below)
Operational	Requirements

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UO-01
Justify	why	meeting	SO-01-02	can
contribute	to	the	fulfilment	of	UO-
01

Since	the	system	needs	to	be	run	on	any	computer,	the	main	OS	types
that	need	to	be	considered	are	Linux,	Windows,	and	MacOS.	This
requirement	deals	with	Windows.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-031

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Table	4.40.	System	NonFunctional	Requirements:	SO-01-03

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SO-01-03 Type Functional Non-Functional

User ☐ ☐
System ☐ ☒

Creation:

Modification:

Description: The	system	shall	run	on	computers	with	MacOS. Organizational	(sub-type	below)
Operational	Requirements

Priority: Highest ✔	High Medium Low Lowest
This	Req.	is	Engineered	From: UO-01
Justify	why	meeting	SO-01-03	can
contribute	to	the	fulfilment	of	UO-
01

Since	the	system	needs	to	be	run	on	any	computer,	the	main	OS	types
that	need	to	be	considered	are	Linux,	Windows,	and	MacOS.	This
requirement	deals	with	MacOS.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-033

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	18	/	20

Table	4.41.	System	NonFunctional	Requirements:	SE-01-01

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Requirement	#: SE-01-01 Type Functional Non-Functional

User ☐ ☐
System ☐ ☒

Creation:

Modification:

Description:
The	system	shall	not	be	developed	by	a	citizen	of	the
People's	Republic	of	China	(PRC)	as	per	Public	Laws
112-10,	Section	1340(a)	and	112-55,	Section	536.

External	(sub-type	below)
Legislative	Requirements	on
Safety/Security

Priority: ✔	Highest High Medium Low Lowest
This	Req.	is	Engineered	From: UE-01
Justify	why	meeting	SE-01-01	can
contribute	to	the	fulfilment	of	UE-
01

The	user	requirement	is	that	the	workers	cannot	be	citizens	of	the	PRC.
This	requirement	restricts	the	system	from	being	developed	by	those
individuals,	meeting	the	user	requirement.

Traceability:
Use	cases	cf. N/A
Test	cases	cf. TC-030

Acknowledgment Generated	from	the	CapStone	Process	Management	System	©2015

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	19	/	20

Table	4.42.	Mapping	from	user	requirements	to	system	requirements

Project	Name:	NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

User	Requirements System	Requirements
Req	ID Description Req	ID Description

UE-01

Participants	may	not	be	citizens	of	the
People’s	Republic	of	China	(PRC),	per	Public
Laws	112-10,	Section	1340(a)	and	112-55,
Section	536.

SE-01-01

The	system	shall	not	be	developed	by	a	citizen
of	the	People's	Republic	of	China	(PRC)	as	per
Public	Laws	112-10,	Section	1340(a)	and	112-
55,	Section	536.

UF-A

The	team	will	devise	a	method	to	predict
and/or	correct	for	the	sensitivity	of	the
thruster	output	parameters	(i.e.	HET
performance,	operation,	and	plume
parameters).

SF-A-01 The	system	shall	predict	the	thrust	in	units	of
newtons	the	HET	is	outputting.

SF-A-03 The	system	shall	predict	the	thruster
efficiency	as	a	percentage.

SF-A-04 The	system	shall	predict	the	specific	impulse
in	seconds	the	thruster	is	using.

SF-A-05
The	system	shall	implement	a	deep	belief
network	(DBN)	to	predict	different	thruster
output	parameters.

SF-A-06 The	system	shall	utilize	a	Kalman	filter	to
estimate	the	values	of	the	output	parameters.

UF-B

The	team	must	include	a	report	detailing	the
results	of	the	machine	learning	analysis	and
data	mining	techniques	including	utilized	data
sets,	any	models/analyses	generated	by	the
analysis	and	techniques,	and	an	evaluation	of
the	model	accuracy	and	predictive	capability.

SF-B-01
The	system	shall	record	the	results	for
running	the	machine	learning	model	or	data
mining	technique	to	local	storage.

SF-B-02 The	system	shall	record	the	training	data	used
to	train	a	model	for	the	report.

SF-B-03
The	system	shall	record	the	machine	learning
model	type	being	used	and	the	resulting
analysis	from	the	model	for	the	report.

SF-B-04
The	system	shall	calculate	the	predictive
capability	of	the	model/technique	to	include	in
the	report.

SF-B-05 The	system	shall	record	the	correlation	results
to	be	included	in	the	report.

UF-C

The	team	should	gather	information	and	data
from	HET	vacuum	test	facilities	that	tested
Hall	thrusters	in	order	to	build	the	data	set	for
their	system.

SF-C-01 The	system	shall	read	in	the	data	to	be	used
from	a	.CSV	file.

SF-C-03
The	system	shall	remove	a	column	of	data	if
more	than	60%	of	the	column's	values	are
missing.

SF-C-04 The	system	may	remove	the	nominal	data
columns.

SF-C-05
The	system	shall	replace	missing	values	with
a	result	from	an	appropriate	mathematical
equation.

SF-C-06 The	system	shall	remove	any	outliers	within
the	data	set.

SF-C-07 The	system	shall	normalize	each	column	in
the	data	set	so	all	values	are	between	0	and	1.
The	system	shall	standardize	each	column	in

Appendix	R:	Requirements	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Requirements:	20	/	20

SF-C-08 the	data	set	so	all	variables	have	a	mean	of	0
and	standard	deviation	of	1.

UF-D
The	team	should	utilize	data	mining
techniques	to	discover	previously	undiscovered
correlations	within	public	data	sets.

SF-D-01 The	system	shall	perform	Pearson	correlation
analysis	on	the	data	set.

SF-D-02
The	system	shall	generate	a	correlation	matrix
to	show	the	correlations	between	all	of	the
variables.

SF-D-03
The	system	shall	use	Principal	Component
Analysis	(PCA)	to	identify	correlations	within
the	data.

SF-D-04 The	system	shall	calculate	Lasso	Regression
correlations	within	the	data	set.

SF-D-05
The	system	shall	generate	scatter	plots
displaying	each	variable	against	every	other
variable.

UO-01

The	user	needs	the	machine	learning	model	to
be	able	to	run	on	the	computers	in	HET
facilities	so	the	software	can	be	accessible	by
anybody	who	needs	it.

SO-01-01 The	system	shall	run	on	Linux	distributions.

SO-01-02 The	system	shall	run	on	Windows	10
operating	systems.

SO-01-03 The	system	shall	run	on	computers	with
MacOS.

UP-02

The	client	wants	the	system	to	utilize
published	data	sets	from	HET	Facilities	that
used	SPT-140	and/or	SPT-100	Hall	thrusters
and	If	time	permits,	the	teams	should	try	to
incorporate	data	from	other	thruster	models.

SP-02-01
The	system	shall	utilize	data	from	HET
Facilities	that	utilized	SPT-140	and/or	SPT-100
Hall	thrusters.

SP-02-02 The	system	may	include	data	pertaining	to
other	Hall	thruster	types.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	1	/	8

Table	4.1.	Use	Case	Index	Table

Project	Name:	NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall	Thruster	Facility	Effects	Data

Use	Case	ID Use	Case	Name Level Author Version

UC-001 Hall	Thruster	Data	Analysis	Tool Summary Daniel	Daniel	Donley 1.8

UC-002 Clean	the	Data	Set Primary	task Daniel	Daniel	Donley 0.7

UC-003 Correlate	the	Data	Set Primary	task Daniel	Daniel	Donley 1.4

UC-004 Run	Filter	Script Primary	task Daniel	Daniel	Donley 0.3

UC-005 Evaluate	DBN	Model Subfunction Daniel	Daniel	Donley 0.6

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	2	/	8

Table	4.2.	Use	Case	UC-001

Project	Name:
NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall	Thruster	Facility	Effects
Data

Use	Case	ID: UC-001

Use	Case	Name: Hall	Thruster	Data	Analysis	Tool

User	Goal: The	system	generates	useful	information	from	the	correlations	and	techniques.

Scope: Hall	Thruster	Data	Analysis	Tool

Level: Summary

Relevant	User	Reqs: UF-A,UF-B,UF-C,UF-D

Relevant	System	Reqs:
SF-A-01,SF-A-03,SF-A-04,SF-A-05,SF-A-06,SF-B-01,SF-B-02,SF-B-03,SF-B-04,SF-B-05,SF-
C-01,SF-C-03,SF-C-04,SF-C-05,SF-C-06,SF-C-07,SF-C-08,SF-D-01,SF-D-02,SF-D-03,SF-D-
04,SF-D-05

Primary	Actor: Developer

Precondition: System	is	executed	or	finishes	a	loop.

Minimal	Guarantee: The	console	application	fails	to	launch.

Success	Guarantee: The	console	application	executes	and	the	developer	is	at	the	main	menu.

Trigger: The	developer	launches	the	system,	or	returns	from	one	of	the	other	use	cases..

Success	Scenario:

Step Actions
1 The	developer	launches	the	script	to	pre-process	and	analyze	the	raw	data.

2 The	system	cleans	the	data	and	saves	the	cleaned	set	to	the	file	directory.

3 The	developer	launches	the	script	to	generate	correlation	data.

4 The	system	takes	the	cleaned	data	and	calculates	requested	correlation	figures.

5 The	developer	launches	the	script	to	generate	data	from	a	filter.

6 The	system	records	the	generated	data	to	the	file	directory.

7 The	developer	launches	a	model	script.

8
The	system	trains	amodel,	then	reocrds	the	model,	weights,	training	data,	and
accuracy.

Extensions: Branching	Scenarios

1A Condition:	The	system	is	unable	to	locate	the	data	sets.

Step Actions
1 The	system	informs	the	developer	why	the	data	sets	couldn't	be	obtained.

2 The	system	shuts	down.

3A Condition:	The	cleaned	data	file	cannot	be	found.

Step Actions
1 The	system	informs	the	developer	the	file	is	not	found.

2 The	system	shuts	down.

5A Condition:	The	cleaned	data	file	cannot	be	found.

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	3	/	8

Step Actions
1 The	system	infoms	the	developer	the	file	is	not	found.

2 The	system	shuts	down.

7A Condition:	The	system	cannot	find	the	generated	filter	data.

Step Actions
1 The	system	infoms	the	user	that	the	filter	data	has	not	been	generated	yet.

2 The	system	shuts	down.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	4	/	8

Table	4.3.	Use	Case	UC-002

Project	Name:
NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall	Thruster	Facility	Effects
Data

Use	Case	ID: UC-002

Use	Case	Name: Clean	the	Data	Set

User	Goal: Remove	unnecessary	and	unuseful	data	to	improve	the	overall	quality	of	the	data	set.

Scope: Data

Level: Primary	task

Relevant	User	Reqs: UF-C

Relevant	System	Reqs: SF-C-01,SF-C-03,SF-C-04,SF-C-05,SF-C-06,SF-C-07,SF-C-08

Primary	Actor: Developer

Precondition: The	system	launches.

Minimal	Guarantee: The	data	cannot	be	cleaned	or	is	not	fully	cleaned.

Success	Guarantee: The	data	is	clean	and	can	be	used	for	processing.

Trigger: Hall	Thruster	Data	Analysis	Tool

Success	Scenario:

Step Actions
1 The	system	retrieves	the	SPT	csv	file	from	the	directory.

2 The	system	retrieves	the	facility	csv	file	from	the	directory.

3 The	system	retrieves	the	meta	data	csv	file	from	the	directory.

4 The	system	joins	the	SPT	and	facility	file	data	based	on	the	meta	data.

5 The	system	removes	any	nominal	columns	from	the	data	set.

6 The	system	handles	any	outliers	within	the	data.

7 The	system	handles	any	remaining	missing	values	within	the	data.

8 The	system	saves	the	new	cleaned	data	set	to	the	file	directory.

Extensions: Branching	Scenarios

1A Condition:	The	SPT	data	file	is	not	present.

Step Actions

1 The	system	informs	the	developer	the	file	is	missing.

2 The	system	shuts	down.

1B Condition:	The	meta	data	file	is	not	present.

Step Actions
1 The	system	informs	the	developer	the	file	is	missing.

2 The	system	shuts	down.

2A Condition:	The	facility	data	file	is	not	present.

Step Actions
1 The	system	informs	the	developer	the	file	is	missing.

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	5	/	8

2 The	system	shuts	down.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	6	/	8

Table	4.4.	Use	Case	UC-003

Project	Name:
NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall	Thruster	Facility	Effects
Data

Use	Case	ID: UC-003

Use	Case	Name: Correlate	the	Data	Set

User	Goal: Output	information	about	the	correlations	in	the	data	set.

Scope: Data

Level: Primary	task

Relevant	User	Reqs: UF-B,UF-D

Relevant	System	Reqs: SF-B-05,SF-D-01,SF-D-02,SF-D-03,SF-D-04,SF-D-05

Primary	Actor: System

Precondition: The	system	successfully	obtains	standardized	and	normalized	data.

Minimal	Guarantee: No	correlations	are	generated	within	the	data.

Success	Guarantee:
A	correlation	matrix	is	generated,	scatter	plots	between	variables	are	created,	and
correlations	are	recorded	to	a	file.

Trigger: Hall	Thruster	Data	Analysis	Tool

Success	Scenario:

Step Actions
1 The	system	creates	scatter	plots	of	each	variable	against	every	other	variable.

2 The	system	calculates	the	Pearson	correlations	between	each	pair	of	variables.

3
The	system	creates	a	correlation	matrix	displaying	each	correlation	that	was
calculated.

4 The	system	creates	a	plot	of	the	feature	influences	from	PCA.

5 The	system	calculates	the	Lasso	and	Ridge	Regression	correlations.

6 The	system	outputs	all	correlation	data	to	the	folder	directory.

Extensions: Branching	Scenarios

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	7	/	8

Table	4.5.	Use	Case	UC-004

Project	Name:
NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall	Thruster	Facility	Effects
Data

Use	Case	ID: UC-004

Use	Case	Name: Run	Filter	Script

User	Goal: Save	data	points	from	estimations	and	display	current	state.

Scope: Learner

Level: Primary	task

Relevant	User	Reqs: UF-A,UF-B

Relevant	System	Reqs: SF-A-06,SF-B-01,SF-B-02

Primary	Actor: System

Precondition: The	developer	launches	a	kalman	filter	script.

Minimal	Guarantee: The	Kalman	filter	could	not	be	set	up.

Success	Guarantee:
Data	points	from	the	estimations	are	saved	and	the	developer	can	see	values	of	the	current
state.

Trigger: Hall	Thruster	Data	Analysis	Tool

Success	Scenario:

Step Actions
1 The	system	gets	the	cleaned	data	from	storage.

2 The	system	normalizes	the	data.

3 The	system	performs	PCA	reduction	on	the	data.

4 The	system	runs	the	data	through	the	designated	Kalman	filter.

5 The	system	initializes	the	designated	Kalman	filter	object.

6 The	system	calculates	the	covariance	matrix.

7 The	system	The	system	calculates	a	noise	uncertainty	matrix.

8 The	system	creates	a	new	DataFrame	to	hold	the	newly	generated	data	records.

9 The	system	predicts	the	state	estimate	with	the	Kalman	filter	object.

10 The	system	updates	the	Kalman	filter	object.

11 The	system	appends	the	state	estimate	from	the	filter	to	the	DataFrame.

12 The	system	returns	the	data	frame	to	the	developer.

Extensions: Branching	Scenarios

3A Condition:	The	threshold	is	invalid.

Step Actions

1
The	system	wanrs	the	developer	the	threshold	is	invalid	and	PCA	cannot	be
performed.

2 The	system	exits.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	U:	Use	Case	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Use	Cases:	8	/	8

Table	4.6.	Use	Case	UC-005

Project	Name:
NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall	Thruster	Facility	Effects
Data

Use	Case	ID: UC-005

Use	Case	Name: Evaluate	DBN	Model

User	Goal: Calculate	the	accuracy	and	predictive	capability	of	the	machine	learning	model

Scope: Learner

Level: Subfunction

Relevant	User	Reqs: UF-A,UF-B

Relevant	System	Reqs: SF-A-01,SF-A-03,SF-A-04,SF-A-05,SF-B-01,SF-B-03,SF-B-04

Primary	Actor: System

Precondition: The	system	successfully	trains	the	model

Minimal	Guarantee: The	model	is	not	evaluated	and	no	report	is	generated.

Success	Guarantee: The	model	is	evaluated	and	the	report	is	generated.

Trigger: The	system	evaluates	the	machine	learning	model.

Success	Scenario:

Step Actions
1 The	system	constructs	a	DBN	model.

2 The	system	compiles	the	model.

3 The	system	trains	the	model.

4 The	system	evaluates	the	model	with	sample	training	data	and	reocrds	its	accuracy.

5 The	system	evaluates	the	model	with	the	orginial	data	set	and	reocrds	its	accuracy.

6 The	system	serializes	the	model	and	weights.

Extensions: Branching	Scenarios

3A Condition:	No	data	is	available	for	training.

Step Actions
1 The	system	informs	the	user	that	training	data	is	needed	from	the	filter	scripts.

2 The	system	shuts	down.

4A Condition:	The	accuracy	cannot	be	calculated.

Step Actions
1 The	system	will	record	the	accuracy	as	a	null	value.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	1	/	44

Table	8.2.1.	Test	Suite	TS-001:	Data	Cleaning

Test	Case	ID Test	Stage Test	Case	Description Tested
TC-001 Unit The	get_data	function	in	data_input.py. Yes
TC-002 Unit The	normalize	function	in	data_input.py Yes
TC-009 Unit The	remove_unfilled_columns	function	in	data_input.py Yes
TC-010 Unit The	remove_columns	function	in	data_input.py Yes
TC-011 Unit The	replace_missing_values	function	in	data_input.py Yes
TC-012 Unit The	remove_outliers	function	in	data_input.py Yes
TC-013 Unit The	standardize	function	in	data_input.py Yes

TC-017 Integration Combine	functions	in	data_input.py	to	convert	CSV	files	to	pre-
processed	DataFrames. Yes

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	2	/	44

Table	8.2.2.	Test	Suite	TS-002:	Deep	Belief	Network	(DBN)

Test	Case	ID Test	Stage Test	Case	Description Tested
TC-003 Unit The	construct_model	function	in	dbn.py Yes
TC-004 Unit The	compile_model	function	in	dbn.py Yes
TC-005 Unit The	fit_model	function	in	dbn.py. Yes
TC-006 Unit The	evaluate_model	function	in	dbn.py. Yes
TC-007 Unit The	serialize_model	function	in	dbn.py. Yes

TC-018 Integration The	DBN	can	accept	a	DataFrame	and	output	a	trained	model
for	evaluation. Yes

TC-039 Unit Test	model_evaluator.py Yes

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	3	/	44

Table	8.2.3.	Test	Suite	TS-003:	Correlation	Analysis

Test	Case	ID Test	Stage Test	Case	Description Tested
TC-008 Unit Test	the	reduce	function	in	pca.py Yes
TC-014 Unit Test	the	inverse_reduce	function	in	pca.py Yes
TC-015 Unit Test	generate_plots	function	of	pca.py Yes
TC-022 Unit Test	generate_scatter_plots	of	single_variate.py Yes
TC-023 Unit Test	the	generate_heatmap	of	the	single_variate.py	script. Yes
TC-024 Unit Test	the	lasso_ridge_regression.py	script. Yes

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	4	/	44

Table	8.2.4.	Test	Suite	TS-004:	Kalman	Filter

Test	Case	ID Test	Stage Test	Case	Description Tested

TC-019 Unit Test	the	get_state_transition_mtarix	function	from	the	filter.py
script. Yes

TC-020 Unit The	get_covariance_matrix	function	in	kalmanFitler.py Yes
TC-021 Unit The	get_noise_uncertainty	function	in	kalmanFilter.py. Yes

TC-025 Integration Give	the	Kalman	filter	a	DataFrame	and	have	it	save	points	and
display	values	for	the	current	state. Yes

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	5	/	44

Table	8.2.5.	Test	Suite	TS-005:	Main	Execution

Test	Case	ID Test	Stage Test	Case	Description Tested
TC-026 System Test	execution	of	correlation	analysis	scripts Yes
TC-027 System Test	execution	of	preprocess_raw_data.py Yes
TC-028 System Text	execution	of	the	run_model	script. Yes
TC-029 System Test	the	run_filter.py	script Yes

TC-035 Acceptance Confirm	data	is	preprocessed	from	running
preprocess_raw_data.py. Yes

TC-036 Acceptance Test	that	correlation	results	are	being	generated. Yes
TC-037 Acceptance Test	if	Kalman	fitler	fully	implemented. Yes
TC-038 Acceptance Test	if	a	Neural	Network	is	trained,	evaluated,	then	saved. Yes

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	6	/	44

Table	8.2.6.	Test	Suite	TS-006:	Nonfunctional	Testing

Test	Case	ID Test	Stage Test	Case	Description Tested
TC-030 Acceptance Test	if	developers	are	citizens	of	China. Yes
TC-031 Acceptance The	system	launches	on	a	Windows	platform. Yes
TC-032 Acceptance The	system	runs	on	a	Linux	platform. Yes
TC-033 Acceptance Test	if	the	system	can	launch	on	macOS. Yes

TC-034 Acceptance Test	if	all	data	records	in	the	raw	SPT	data	are	either	SPT-140
or	SPT-100	data	records. Yes

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	7	/	44

Table	8.2.7.	Test	Case	TC-001

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-001	(Unit	Test)
What	To	Test The	get_data	function	in	data_input.py.
Test	Data
Input A	csv	file	containing	input	data.

Expected
Result A	matrix	with	more	than	0	rows	and	columns	containing	the	data	of	the	csv	file.

Traceability

Relevant	User	Req.(s) UF-C,UP-02
Relevant	System	Req.(s) SF-C-01,SP-02-01,SP-02-02
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	8	/	44

Table	8.2.8.	Test	Case	TC-002

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-002	(Unit	Test)
What	To	Test The	normalize	function	in	data_input.py
Test	Data
Input The	DataFrame	object	containing	a	matrix	of	data	from	the	input	file.

Expected
Result A	DataFrame	with	every	value	being	a	positive	value	between	0	and	1.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-07,SF-D-02
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	9	/	44

Table	8.2.9.	Test	Case	TC-003

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-003	(Unit	Test)
What	To	Test The	construct_model	function	in	dbn.py
Test	Data
Input A	file	containing	sample	Hall	thruster	data,	uploaded	and	normalized.

Expected
Result A	machine	learning	model	that	can	then	be	analyzed,	deployed,	or	trained	further.

Traceability

Relevant	User	Req.(s) UF-A,UF-B
Relevant	System	Req.(s) SF-A-05,SF-B-03
Relevant	Use	Case(s) UC-001,UC-005

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	10	/	44

Table	8.2.10.	Test	Case	TC-004

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-004	(Unit	Test)
What	To	Test The	compile_model	function	in	dbn.py
Test	Data
Input The	constructed	model	from	the	construct_DBN	procedure.

Expected
Result A	successfully	compiled	DBN	without	an	error	or	exception	occurring.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-05
Relevant	Use	Case(s) UC-001,UC-005

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	11	/	44

Table	8.2.11.	Test	Case	TC-005

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-005	(Unit	Test)
What	To	Test The	fit_model	function	in	dbn.py.
Test	Data
Input The	constructed	and	compiled	model,	and	data	that	can	be	used	to	train	the	model.

Expected
Result A	trained	model	that	ran	without	throwing	an	exception.

Traceability

Relevant	User	Req.(s) UF-A,UF-B
Relevant	System	Req.(s) SF-A-05,SF-B-02
Relevant	Use	Case(s) UC-001,UC-005

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	12	/	44

Table	8.2.12.	Test	Case	TC-006

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-006	(Unit	Test)
What	To	Test The	evaluate_model	function	in	dbn.py.
Test	Data
Input The	model	that	was	trained	as	well	as	the	training	data.

Expected
Result The	accuracy	of	the	model.

Traceability

Relevant	User	Req.(s) UF-A,UF-B
Relevant	System	Req.(s) SF-A-01,SF-A-03,SF-A-04,SF-A-05,SF-B-01,SF-B-04
Relevant	Use	Case(s) UC-001,UC-005

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	13	/	44

Table	8.2.13.	Test	Case	TC-007

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-007	(Unit	Test)
What	To	Test The	serialize_model	function	in	dbn.py.
Test	Data
Input The	trained	DBN	model.

Expected
Result A	JSON	file	containing	the	values	for	the	weights	of	the	model.

Traceability

Relevant	User	Req.(s) UF-A,UF-B
Relevant	System	Req.(s) SF-A-05,SF-B-03
Relevant	Use	Case(s) UC-001,UC-005

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	14	/	44

Table	8.2.14.	Test	Case	TC-008

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-003:	Correlation	Analysis
Test	Case	ID TC-008	(Unit	Test)
What	To	Test Test	the	reduce	function	in	pca.py
Test	Data
Input A	DataFrame	containing	standardized	data,	and	a	precision	between	0	and	1.

Expected
Result A	DataFrame	with	no	more	columns	than	the	original	DataFrame.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-D-03
Relevant	Use	Case(s) UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	15	/	44

Table	8.2.15.	Test	Case	TC-009

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-009	(Unit	Test)
What	To	Test The	remove_unfilled_columns	function	in	data_input.py
Test	Data
Input A	pandas	DataFrame	containing	data.

Expected
Result A	DataFrame	with	all	columns	with	more	than	60%	of	the	values	missing	removed.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-03
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	16	/	44

Table	8.2.16.	Test	Case	TC-010

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-010	(Unit	Test)
What	To	Test The	remove_columns	function	in	data_input.py

Test	Data
Input

A	pandas	DataFrame	containing	more	than	0	rows	and	column	and	the	meta	data	of	that
DataFrame	and	an	array	of	numbers	where	each	number	is	an	index	of	the	column	to	remove.

Expected
Result A	DataFrame	where	every	specified	column	is	removed.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-03,SF-C-04
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	17	/	44

Table	8.2.17.	Test	Case	TC-011

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-011	(Unit	Test)
What	To	Test The	replace_missing_values	function	in	data_input.py
Test	Data
Input A	DataFrame	containing	more	than	0	rows	and	columns	and	missing	values.

Expected
Result A	DataFrame	that	contains	no	missing	values.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-05
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	18	/	44

Table	8.2.18.	Test	Case	TC-012

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-012	(Unit	Test)
What	To	Test The	remove_outliers	function	in	data_input.py
Test	Data
Input A	DataFrame	containing	more	than	0	rows	and	columns	and	no	missing	values.

Expected
Result A	DataFrame	where	all	values	considered	an	outlier	are	handled.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-06
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	19	/	44

Table	8.2.19.	Test	Case	TC-013

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-013	(Unit	Test)
What	To	Test The	standardize	function	in	data_input.py
Test	Data
Input A	pandas	DataFrame	with	no	missing	values	and	more	than	0	rows	and	columns.

Expected
Result A	pandas	DataFrame	where	each	column	has	a	mean	of	0	and	a	standard	deviation	of	1.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-08
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	20	/	44

Table	8.2.20.	Test	Case	TC-014

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-003:	Correlation	Analysis
Test	Case	ID TC-014	(Unit	Test)
What	To	Test Test	the	inverse_reduce	function	in	pca.py
Test	Data
Input A	DataFrame	containing	test	SPT	data	that's	already	been	through	PCA.

Expected
Result A	DataFrame	containing	the	orginal	data	before	PCA.

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-B-05,SF-D-03
Relevant	Use	Case(s) UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	21	/	44

Table	8.2.21.	Test	Case	TC-015

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-003:	Correlation	Analysis
Test	Case	ID TC-015	(Unit	Test)
What	To	Test Test	generate_plots	function	of	pca.py
Test	Data
Input None

Expected
Result

Bar	graphs	totalling	the	number	of	components	in	the	PCA	model,	each	with	the	same	number
of	points	equal	to	the	number	of	columns	of	the	components.

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-B-05,SF-D-03
Relevant	Use	Case(s) UC-001,UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	22	/	44

Table	8.2.22.	Test	Case	TC-019

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-004:	Kalman	Filter
Test	Case	ID TC-019	(Unit	Test)
What	To	Test Test	the	get_state_transition_mtarix	function	from	the	filter.py	script.
Test	Data
Input A	DataFrame	containing	the	initial	cleaned	SPT	data.

Expected
Result

A	symmetric	matrix	where	each	cell	is	a	percentage	of	the	sum	of	the	correlations	of	that
row	of	the	matrix.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-06
Relevant	Use	Case(s) UC-004

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	23	/	44

Table	8.2.23.	Test	Case	TC-020

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-004:	Kalman	Filter
Test	Case	ID TC-020	(Unit	Test)
What	To	Test The	get_covariance_matrix	function	in	kalmanFitler.py
Test	Data
Input A	DataFrame	containing	more	than	0	rows	and	columns	and	no	missing	values.

Expected
Result A	symmetrical	matrix	where	each	element	is	the	covariance	of	one	column	against	another.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-06
Relevant	Use	Case(s) UC-001,UC-004

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	24	/	44

Table	8.2.24.	Test	Case	TC-021

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-004:	Kalman	Filter
Test	Case	ID TC-021	(Unit	Test)
What	To	Test The	get_noise_uncertainty	function	in	kalmanFilter.py.
Test	Data
Input A	DataFrame	containing	more	than	0	rows	and	columns	and	no	missing	values.

Expected
Result

A	square	matrix	of	the	size	of	of	the	number	of	columns	where	all	values	are	random	noise
from	a	gaussian	distribution.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-06
Relevant	Use	Case(s) UC-001,UC-004

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	25	/	44

Table	8.2.25.	Test	Case	TC-022

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-003:	Correlation	Analysis
Test	Case	ID TC-022	(Unit	Test)
What	To	Test Test	generate_scatter_plots	of	single_variate.py
Test	Data
Input A	DataFrame	containing	test	SPT	data.

Expected
Result

A	number	of	scatter	plots	equal	to	n^2/2	where	n	is	the	number	of	variables	all	saved	to	the
directory,	each	showing	a	scatter	plot	between	the	variables.

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-D-01,SF-D-05
Relevant	Use	Case(s) UC-001,UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	26	/	44

Table	8.2.26.	Test	Case	TC-023

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-003:	Correlation	Analysis
Test	Case	ID TC-023	(Unit	Test)
What	To	Test Test	the	generate_heatmap	of	the	single_variate.py	script.
Test	Data
Input DataFrame	containing	test	SPT	data.

Expected
Result

A	heatmap	with	the	variables	on	the	x	and	y-axes,	where	each	cell	is	the	correlation	between
those	two	variables.

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-B-01,SF-B-05,SF-D-01,SF-D-02
Relevant	Use	Case(s) UC-001,UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	27	/	44

Table	8.2.27.	Test	Case	TC-024

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-003:	Correlation	Analysis
Test	Case	ID TC-024	(Unit	Test)
What	To	Test Test	the	lasso_ridge_regression.py	script.
Test	Data
Input A	DataFrame	containg	test	SPT	data.

Expected
Result

Two	plots,	one	of	the	Lasso	regression	correlations,	another	of	the	Ridge	regression
correlations.

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-B-01,SF-B-05,SF-D-04
Relevant	Use	Case(s) UC-001,UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	28	/	44

Table	8.2.28.	Test	Case	TC-039

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-039	(Unit	Test)
What	To	Test Test	model_evaluator.py
Test	Data
Input A	machine	learning	model	json	file,	weights,	and	a	sample	DataFrame

Expected
Result An	evaluation	with	the	same	dimensional	complexity	as	the	DataFrame	from	the	model.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-05,SF-B-01,SF-B-03
Relevant	Use	Case(s) UC-001

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	29	/	44

Table	8.2.29.	Test	Case	TC-017

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-001:	Data	Cleaning
Test	Case	ID TC-017	(Integration	Test)
What	To	Test Combine	functions	in	data_input.py	to	convert	CSV	files	to	pre-processed	DataFrames.
Test	Data
Input CSV	files	containing	the	SPT	data.

Expected
Result

A	standardized	DataFrame	where	each	column	has	a	mean	of	0	and	standard	deviation	of	1	and
a	normalized	DataFrame	where	all	values	are	between	0	and	1.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-01,SF-C-03,SF-C-04,SF-C-05,SF-C-06,SF-C-07,SF-C-08
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	30	/	44

Table	8.2.30.	Test	Case	TC-018

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-002:	Deep	Belief	Network	(DBN)
Test	Case	ID TC-018	(Integration	Test)
What	To	Test The	DBN	can	accept	a	DataFrame	and	output	a	trained	model	for	evaluation.
Test	Data
Input A	pandas	DataFrame	containing	more	than	0	rows	and	columns	and	no	missing	values.

Expected
Result A	JSON	file	containing	the	model	parameters	and	weights.

Traceability

Relevant	User	Req.(s) UF-A,UF-B

Relevant	System	Req.(s) SF-A-01,SF-A-03,SF-A-04,SF-A-05,SF-B-01,SF-B-02,SF-B-03,SF-B-
04

Relevant	Use	Case(s) UC-001,UC-005
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	31	/	44

Table	8.2.31.	Test	Case	TC-025

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-004:	Kalman	Filter
Test	Case	ID TC-025	(Integration	Test)

What	To	Test Give	the	Kalman	filter	a	DataFrame	and	have	it	save	points	and	display	values	for	the	current
state.

Test	Data
Input Standardized	and	normalized	DataFrames	of	the	SPT	data.

Expected
Result Estimated	data	points	are	saved	in	a	spreadsheet,	and	the	current	state	values	are	displayed.

Traceability

Relevant	User	Req.(s) UF-A,UF-B
Relevant	System	Req.(s) SF-A-01,SF-A-03,SF-A-04,SF-A-06,SF-B-01,SF-B-04
Relevant	Use	Case(s) UC-001,UC-004

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	32	/	44

Table	8.2.32.	Test	Case	TC-026

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-026	(System	Test)
What	To	Test Test	execution	of	correlation	analysis	scripts
Test	Data
Input DataFrame	containing	test	SPT	data.

Expected
Result Outputs	all	associated	correlation	results	(scatter	plot,	heatmap,	Ridge,	Lasso,	PCA)

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-B-01,SF-B-05,SF-D-01,SF-D-02,SF-D-03,SF-D-04,SF-D-05
Relevant	Use	Case(s) UC-001,UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	33	/	44

Table	8.2.33.	Test	Case	TC-027

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-027	(System	Test)
What	To	Test Test	execution	of	preprocess_raw_data.py
Test	Data
Input A	DataFrame	containing	unclean	SPT	data.

Expected
Result

A	DataFrame	with	no	outliers,	the	same	number	of	columns	or	less	(but	greater	than	0),
standardized,	and	normalized,	then	saved	to	the	file	directory.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-01,SF-C-03,SF-C-04,SF-C-05,SF-C-06,SF-C-07,SF-C-08
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	34	/	44

Table	8.2.34.	Test	Case	TC-028

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-028	(System	Test)
What	To	Test Text	execution	of	the	run_model	script.
Test	Data
Input A	DataFrame	containing	SPT	data.

Expected
Result A	DBN	model	file,	weights	file,	and	training	data	all	saved	to	the	file	directory.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-01,SF-A-03,SF-A-04,SF-A-05,SF-A-06
Relevant	Use	Case(s) UC-001,UC-005

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	35	/	44

Table	8.2.35.	Test	Case	TC-029

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-029	(System	Test)
What	To	Test Test	the	run_filter.py	script
Test	Data
Input A	DataFrame	containing	SPT	data.

Expected
Result A	DataFrame	containing	generated	SPT	data	that	totals	n^2/2	records.

Traceability

Relevant	User	Req.(s) UF-A
Relevant	System	Req.(s) SF-A-06
Relevant	Use	Case(s) UC-001,UC-004

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	36	/	44

Table	8.2.36.	Test	Case	TC-030

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-006:	Nonfunctional	Testing
Test	Case	ID TC-030	(Acceptance	Test)
What	To	Test Test	if	developers	are	citizens	of	China.
Test	Data
Input The	citizenship	of	each	developer.

Expected
Result All	developers	are	permitted	to	work	on	the	project.

Traceability

Relevant	User	Req.(s) UE-01
Relevant	System	Req.(s) SE-01-01
Relevant	Use	Case(s) UC-001

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	37	/	44

Table	8.2.37.	Test	Case	TC-031

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-006:	Nonfunctional	Testing
Test	Case	ID TC-031	(Acceptance	Test)
What	To	Test The	system	launches	on	a	Windows	platform.
Test	Data
Input None,	the	system	launches.

Expected
Result The	scripts	run	without	issue.

Traceability

Relevant	User	Req.(s) UO-01
Relevant	System	Req.(s) SO-01-02
Relevant	Use	Case(s) UC-001

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	38	/	44

Table	8.2.38.	Test	Case	TC-032

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-006:	Nonfunctional	Testing
Test	Case	ID TC-032	(Acceptance	Test)
What	To	Test The	system	runs	on	a	Linux	platform.
Test	Data
Input None

Expected
Result All	scripts	can	be	run.

Traceability

Relevant	User	Req.(s) UO-01
Relevant	System	Req.(s) SO-01-01
Relevant	Use	Case(s) UC-001

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	39	/	44

Table	8.2.39.	Test	Case	TC-033

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-006:	Nonfunctional	Testing
Test	Case	ID TC-033	(Acceptance	Test)
What	To	Test Test	if	the	system	can	launch	on	macOS.
Test	Data
Input None

Expected
Result All	scripts	can	run

Traceability

Relevant	User	Req.(s) UO-01
Relevant	System	Req.(s) SO-01-03
Relevant	Use	Case(s) UC-001

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	40	/	44

Table	8.2.40.	Test	Case	TC-034

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-006:	Nonfunctional	Testing
Test	Case	ID TC-034	(Acceptance	Test)
What	To	Test Test	if	all	data	records	in	the	raw	SPT	data	are	either	SPT-140	or	SPT-100	data	records.
Test	Data
Input A	DataFrame	containing	the	raw	SPT	data.

Expected
Result For	all	records,	the	filed	'ModelType'	has	either	the	value	'SPT-140'	or	'SPT-100'

Traceability
Relevant	User	Req.(s) UP-02
Relevant	System	Req.(s) SP-02-01
Relevant	Use	Case(s)

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	41	/	44

Table	8.2.41.	Test	Case	TC-035

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-035	(Acceptance	Test)
What	To	Test Confirm	data	is	preprocessed	from	running	preprocess_raw_data.py.
Test	Data
Input DataFrames	containing	raw	facility	and	SPT	data.

Expected
Result A	DataFrame	containing	cleaned	data	and	saved	to	the	file	directory.

Traceability

Relevant	User	Req.(s) UF-C
Relevant	System	Req.(s) SF-C-01,SF-C-03,SF-C-04,SF-C-05,SF-C-06,SF-C-07,SF-C-08
Relevant	Use	Case(s) UC-001,UC-002

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	42	/	44

Table	8.2.42.	Test	Case	TC-036

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-036	(Acceptance	Test)
What	To	Test Test	that	correlation	results	are	being	generated.
Test	Data
Input A	DataFrame	containing	SPT	data

Expected
Result

Graphs	containing	scatter	plots,	a	heatmap,	Lasso	correlations,	Ridge	correlations,	and	PCA
correlations

Traceability

Relevant	User	Req.(s) UF-B,UF-D
Relevant	System	Req.(s) SF-B-01,SF-B-05,SF-D-01,SF-D-02,SF-D-03,SF-D-04,SF-D-05
Relevant	Use	Case(s) UC-001,UC-003

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	43	/	44

Table	8.2.43.	Test	Case	TC-037

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-037	(Acceptance	Test)
What	To	Test Test	if	Kalman	fitler	fully	implemented.
Test	Data
Input A	DataFrame	containing	SPT	data

Expected
Result

A	DataFrame	with	n^2/2	records,	where	n	is	the	number	of	records	in	the	original
DataFrame.

Traceability

Relevant	User	Req.(s) UF-A,UF-B
Relevant	System	Req.(s) SF-A-06,SF-B-02
Relevant	Use	Case(s) UC-001,UC-004

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	T:	Test	Cases PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Cases:	44	/	44

Table	8.2.44.	Test	Case	TC-038

Project
Name:

NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster	Facil ity
Effects	Data

Test	Suite TS-005:	Main	Execution
Test	Case	ID TC-038	(Acceptance	Test)
What	To	Test Test	if	a	Neural	Network	is	trained,	evaluated,	then	saved.
Test	Data
Input A	DataFrame	of	SPT	data.

Expected
Result

A	Neural	Network	model	file,	weights	file,	training	data,	and	evaluation	data	all	saved	to	the
directory.

Traceability

Relevant	User	Req.(s) UF-A,UF-B

Relevant	System	Req.(s) SF-A-01,SF-A-03,SF-A-04,SF-A-05,SF-B-01,SF-B-02,SF-B-03,SF-B-
04

Relevant	Use	Case(s) UC-001,UC-005
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	1	/	40

Table	8.3.1.	Execution	Report	of	Test	Case	TC-001

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-001
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	unit	test	pane
2 Click	the	gear	in	the	top-right	and	select	'Configure'
3 Select	unittest	for	the	testing	framework
4 Select	the	'Data'	folder	under	Data
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/06/2019 Exception	during	execution Fail KeyError:	0
11/06/2019	by	Dan
Donley

2 Dan	Donley 11/06/2019 Data	successfully	opened Pass

3 Dan	Donley 01/21/2020 Data	successfully	opened Pass

4 Dan	Donley 02/17/2020 Data	successfully	opened Pass

5 Dan	Donley 03/05/2020 Data	successfully	opened Pass

6 Dan	Donley 04/05/2020 Data	successfully	opened Pass

7 Dan	Donley 04/06/2020 Data	file	not	opened Fail
Error:	Can	only	compare
identically-labeled
DataFrames

04/06/2020	by	Dan
Donley

8 Dan	Donley 04/06/2020 Data	file	not	opened Fail
ValueError:	The	truth
value	of	the	DataFrame
is	ambiguous

04/06/2020	by	Dan
Donley

9 Dan	Donley 04/06/2020
Data	file	matches	and	can	be
opened

Pass

Execution	Summary: The	function	works	properly.	Data	can	now	be	accepted	into	the	system	for
processing.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	2	/	40

Table	8.3.2.	Execution	Report	of	Test	Case	TC-002

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-002
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	unit	testing	pane	in	spyder
2 Click	the	gear	in	the	top-right	and	click	'Configure'
3 Select	unit	test	as	the	test	framework
4 Select	the	'Data'	folder.
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/06/2019 Failed	during	execution Fail
Path	to
"data_Input_System.py"
could	not	be	found.

11/08/2019	by	Dan
Donley

2 Dan	Donley 11/08/2019 Failed	during	execution Fail Key	Error:	0
11/09/2019	by	Dan
Donley

3 Dan	Donley 11/09/2019
The	data	was	normalized
properly.

Pass

4 Dan	Donley 01/21/2020 Failed	during	execution Fail

TypeError:	loop	of	ufunc
does	not	support
argument	1053	of	type
str	which	has	no
callable	conjugate

01/26/2020	by	Dan
Donley

5 Dan	Donley 01/26/2020 Failed	during	execution Fail
AttributeError:	'float'
object	has	no	attribute
'sqrt'

02/12/2020	by	Dan
Donley

6 Dan	Donley 02/12/2020
All	values	normalized	to
between	zero	and	one.

Pass

7 Dan	Donley 02/22/2020
All	values	normalized	to
between	zero	and	one.

Pass

8 Dan	Donley 03/05/2020
All	values	normalized	to
between	zero	and	one.

Pass

9 Dan	Donley 04/05/2020
All	values	normalized	to
between	zero	and	one.

Pass

10 Dan	Donley 04/06/2020 Frame	not	normalized Fail
AssertionError:	value
not	within	range	of	-1	to
1

04/06/2020	by	Dan
Donley

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	3	/	40

11 Dan	Donley 04/06/2020 All	values	normalized	to
between	zero	and	one

Pass

Execution	Summary: The	function	now	normalizes	all	values	by	column	to	values	between	0	and	1.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	4	/	40

Table	8.3.3.	Execution	Report	of	Test	Case	TC-003

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-003
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	unit	testing	pane	in	Spyder
2 Click	the	gear	in	the	top-right	and	click	'Configure'
3 Select	unittest	for	the	testing	framework
4 Choose	the	'Correlation	Learner'	folder	under	the	'Learner'	directory
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/13/2019 Model	not	constructed Fail Spyder	crashed
11/13/2019	by	Dan
Donley

2 Dan	Donley 11/13/2019
Model	successfully
constructed

Pass

3 Alec	Dady 02/22/2020
Model	successfully
constructed

Pass

4 Dan	Donley 03/05/2020
Model	successfully
constructed

Pass

5 Alec	Dady 03/09/2020
Model	successfully
constructed

Pass

6 Alec	Dady 03/12/2020
Model	successfully
constructed

Pass

7 Alec	Dady 03/17/2020
Model	successfully
constructed

Pass

8 Alec	Dady 04/05/2020
Model	successfully
constructed

Pass

Execution	Summary: The	function	works	and	the	model	can	construct.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	5	/	40

Table	8.3.4.	Execution	Report	of	Test	Case	TC-004

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-004
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	unit	testing	pane	in	Spyder
2 Click	the	gear	in	the	top-right	and	select	'Configure'
3 Choose	unittest	for	the	testing	framework
4 Choose	the	'Correlation	Learner'	folder	under	the	'Learner'	directory
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/13/2019 Model	not	compiled Fail Spyder	crashed
11/13/2019	by	Dan
Donley

2 Dan	Donley 11/13/2019 Model	not	compiled Fail

AttributeError:	module
'tensorflow'	has	no
attribute
'get_default_graph'

11/14/2019	by	Alec
Dady

3 Alec	Dady 11/14/2019 Model	compiled Pass

4 Alec	Dady 02/22/2020 Model	compiled Pass

5 Dan	Donley 03/05/2020 Model	compiled Pass

6 Alec	Dady 03/09/2020 Model	compiled Pass

7 Alec	Dady 03/12/2020 Model	compiled Pass

8 Alec	Dady 03/17/2020 Model	compiled Pass

9 Alec	Dady 04/05/2020 Model	compiled Pass

Execution	Summary: The	function	works	properly	and	the	model	compiles
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	6	/	40

Table	8.3.5.	Execution	Report	of	Test	Case	TC-005

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-005
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	unit	testing	pane	in	Spyder
2 Click	the	gear	in	the	top-right	and	click	'Configure'
3 Select	unittest	for	the	testing	framework
4 Choose	the	'Correlation	Learner'	folder	under	the	'Learner'	directory
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/13/2019 Model	not	trained Fail Spyder	crashed
11/13/2019	by	Dan
Donley

2 Dan	Donley 11/13/2019 Model	not	trained Fail

AttributeError:	module
'tensorflow'	has	no
attribute
'get_default_graph'

11/14/2019	by	Alec
Dady

3 Alec	Dady 11/14/2019 Model	successfully	trained Pass

4 Alec	Dady 02/22/2020 Model	successfully	trained Pass

5 Dan	Donley 03/05/2020 Model	successfully	trained Pass

6 Alec	Dady 03/09/2020 Model	successfully	trained Pass

7 Alec	Dady 03/12/2020 Model	successfully	trained Pass

8 Alec	Dady 03/17/2020 Model	successfully	trained Pass

9 Alec	Dady 04/05/2020 Model	successfully	trained Pass

Execution	Summary: The	function	works	properly	and	can	train	models,	given	there	is	data
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	7	/	40

Table	8.3.6.	Execution	Report	of	Test	Case	TC-006

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-006
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	'Unit	testing'	pane	in	Spyder
2 Click	the	gear	in	the	top-right	corner	of	the	pane	and	select	'Configure'
3 Select	unittest	for	'Testing	Framework'
4 Select	the	'Learner'	folder	with	the	script	and	corresponding	test	script
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/13/2019
Model's	accuracy	not
evaluated

Fail Spyder	crashed
11/13/2019	by	Dan
Donley

2 Dan	Donley 11/13/2019
Model's	accuracy	not
evaluated

Fail

AttributeError:	module
'tensorflow'	has	no
attribute
'get_default_graph'

11/14/2019	by	Alec
Dady

3 Alec	Dady 11/14/2019
Model's	accuracy	evaluated
and	recorded

Pass

4 Alec	Dady 02/22/2020
Model's	accuracy	evaluated
and	recorded

Pass

5 Dan	Donley 03/05/2020
Model's	accuracy	evaluated
and	recorded

Pass

6 Alec	Dady 03/09/2020
Model's	accuracy	evaluated
and	recorded

Pass

7 Alec	Dady 03/12/2020
Model's	accuracy	evaluated
and	recorded

Pass

8 Alec	Dady 03/17/2020
Model's	accuracy	evaluated
and	recorded

Pass

9 Alec	Dady 04/05/2020
Model's	accuracy	evaluated
and	recorded

Pass

Execution	Summary: The	function	works	as	intended	and	can	record	the	accuracy	of	a	model.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	8	/	40

Table	8.3.7.	Execution	Report	of	Test	Case	TC-007

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-007
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Nagivate	to	the	unit	test	pane	in	Spyder
2 Click	the	gear	in	the	top-right	and	select	'Configure'
3 Enter	'unittest'	for	the	testing	framework
4 Select	the	'Learner'	folder	to	load	the	correct	script	and	test	script
5 Click	OK
6 Click	'Run	Tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 11/13/2019 JSON	file	not	created Fail Spyder	crashed
11/13/2019	by	Dan
Donley

2 Dan	Donley 11/13/2019 JSON	file	not	created Fail

AttributeError:	module
'tensorflow'	has	no
attribute
'get_default_graph'

11/14/2019	by	Alec
Dady

3 Alec	Dady 11/14/2019
JSON	file	created	in	local
storage

Pass

4 Alec	Dady 02/22/2020
JSON	file	created	in	local
storage

Pass

5 Dan	Donley 03/05/2020
JSON	file	created	in	local
storage

Pass

6 Alec	Dady 03/09/2020
JSON	file	created	in	local
storage

Pass

7 Alec	Dady 03/12/2020
JSON	file	created	in	local
storage

Pass

8 Alec	Dady 03/17/2020
JSON	file	created	in	local
storage

Pass

9 Alec	Dady 04/05/2020
JSON	file	created	in	local
storage

Pass

Execution	Summary: The	function	can	serialize	the	model	and	weights	for	use	later.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	9	/	40

Table	8.3.8.	Execution	Report	of	Test	Case	TC-008

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-008
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Select	'Unit	testing'
2 Select	the	gear	and	choose	'Configure'
3 Choose	'unittest'	for	the	test	framework
4 Choose	the	folder	with	the	test	scripts
5 Click	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 03/15/2020 No	PCA	data	generated Fail Not	Initialized
03/15/2020	by	Dan
Donley

2 Dan	Donley 03/15/2020 No	PCA	data	generated Fail

ValueError:	shapes
(6,5)	and	(1,1)	not
aligned:	5	(dim	1)	!=	1
(dim	0)

03/15/2020	by	Dan
Donley

3 Dan	Donley 03/15/2020 No	PCA	data	generated Fail
IndexError:	index	1	is
out	of	bounds	for	axis	0
with	size	1

03/15/2020	by	Dan
Donley

4 Dan	Donley 03/15/2020 No	PCA	data	generated Fail
IndexError:	index	1	is
out	of	bounds	for	axis	0
with	size	1

03/15/2020	by	Dan
Donley

5 Dan	Donley 03/15/2020 PCA	reduced	successfully Pass

6 Dan	Donley 04/05/2020 PCA	reduced	successfully Pass

Execution	Summary: PCA	reduction	can	now	be	applied	to	the	data	set.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	10	/	40

Table	8.3.9.	Execution	Report	of	Test	Case	TC-009

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-009
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Data'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/17/2020 Tests	threw	an	error Fail Not	Initialized
02/17/2020	by	Dan
Donley

2 Dan	Donley 02/17/2020 Threw	error	during	execution Fail Key	Error:	0
02/17/2020	by	Dan
Donley

3 Dan	Donley 02/17/2020
Columns	with	60%	of	data
missing	successfully
removed.

Pass

4 Dan	Donley 02/22/2020
Columns	with	60%	of	data
missing	successfully
removed.

Pass

5 Dan	Donley 03/05/2020
Columns	with	60%	of	data
missing	successfully
removed.

Pass

6 Dan	Donley 04/05/2020
Columns	with	60%	of	data
missing	successfully
removed.

Pass

7 Dan	Donley 04/06/2020
Columns	with	60%	of	data
missing	successfully
removed.

Pass

Execution	Summary: Columns	with	more	than	60%	of	the	data	missing	are	removed	from	the	data	set.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	11	/	40

Table	8.3.10.	Execution	Report	of	Test	Case	TC-010

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-010
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Data'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/17/2020
Tests	failed	to	remove
nominal	data

Fail Not	Initialized
02/17/2020	by	Dan
Donley

2 Dan	Donley 02/17/2020
Nominal	data	columns
successfully	removed	from
data	set

Pass

3 Dan	Donley 02/22/2020
Nominal	data	columns
successfully	removed	from
data	set

Pass

4 Dan	Donley 03/05/2020
Nominal	data	columns
successfully	removed	from
data	set

Pass

5 Dan	Donley 04/05/2020
Nominal	data	columns
successfully	removed	from
data	set

Pass

6 Dan	Donley 04/06/2020
Nominal	data	columns
successfully	removed	from
data	set

Pass

Execution	Summary: The	data	set	does	not	contain	any	nominal	data	columns.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	12	/	40

Table	8.3.11.	Execution	Report	of	Test	Case	TC-011

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-011
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Data'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/17/2020 Values	not	replaced Fail Not	Initialized
02/17/2020	by	Dan
Donley

2 Dan	Donley 02/17/2020 Values	not	replaced Fail
Cannot	convert	string	to
float

02/17/2020	by	Dan
Donley

3 Dan	Donley 02/17/2020
All	missing	values	replaced
with	appropriate	number

Pass

4 Dan	Donley 02/22/2020
All	missing	values	replaced
with	appropriate	number

Pass

5 Dan	Donley 03/05/2020
All	missing	values	replaced
with	appropriate	number

Pass

6 Dan	Donley 04/05/2020
All	missing	values	replaced
with	appropriate	number

Pass

7 Dan	Donley 04/06/2020
All	missing	values	replaced
with	appropriate	number

Pass

Execution	Summary: The	values	within	the	data	set	that	were	missing	are	all	replaced	with	appropriate
values	based	on	the	data	type.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	13	/	40

Table	8.3.12.	Execution	Report	of	Test	Case	TC-012

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-012
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Data'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/17/2020 No	outliers	handled Fail Not	initialized
02/17/2020	by	Dan
Donley

2 Dan	Donley 02/17/2020 No	outliers	handled Fail
Cannot	calculate
distribution	of	string

02/17/2020	by	Dan
Donley

3 Dan	Donley 02/17/2020
3	outliers	handled	in	test
data	set

Pass

4 Dan	Donley 02/22/2020
Outliers	were	sucessfully
handled	in	data	set

Pass

5 Dan	Donley 03/05/2020
Outliers	were	sucessfully
handled	in	data	set

Pass

6 Dan	Donley 04/05/2020
Outliers	were	sucessfully
handled	in	data	set

Pass

7 Dan	Donley 04/06/2020
Outliers	were	sucessfully
handled	in	data	set

Pass

Execution	Summary: Outliers	are	no	longer	present	within	the	data	set	and	are	replaced	with	appropriate
values.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	14	/	40

Table	8.3.13.	Execution	Report	of	Test	Case	TC-013

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-013
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Data'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/17/2020
Values	unable	to	be
standardized

Fail Not	initialized
02/17/2020	by	Dan
Donley

2 Dan	Donley 02/17/2020
Values	not	sucessfully
standardized

Fail
Values	do	not	match
expected	output

02/17/2020	by	Dan
Donley

3 Dan	Donley 02/19/2020
Values	standardized	to	a
mean	of	0	and	standard
deviation	of	1

Pass

4 Dan	Donley 02/22/2020
Values	standardized	to	a
mean	of	0	and	standard
deviation	of	1

Pass

5 Dan	Donley 03/05/2020
Values	standardized	to	a
mean	of	0	and	standard
deviation	of	1

Pass

6 Dan	Donley 04/05/2020
Values	standardized	to	a
mean	of	0	and	standard
deviation	of	1

Pass

7 Dan	Donley 04/06/2020 Error	on	execution Fail
AttirbuteError:
'numpy.ndarray'	object
has	no	attribute	'values'

04/06/2020	by	Dan
Donley

8 Dan	Donley 04/06/2020
Values	standardized	to	a
mean	of	0	and	standard
deviation	of	1

Pass

Execution	Summary:
The	data	set	can	now	be	standardized	so	each	column	has	a	mean	of	0	and	standard
deviation	of	1	to	elminate	different	scales.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	15	/	40

Table	8.3.14.	Execution	Report	of	Test	Case	TC-014

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-014
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Select	'Unit	testing'	on	the	right	side
2 Select	the	gear	and	choose	'Configure'
3 Select	'unittest'	for	testing	framework
4 Choose	the	folder	with	the	test	scripts
5 Choose	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 03/15/2020 Test	data	not	reversed Fail Not	initialized
03/15/2020	by	Dan
Donley

2 Dan	Donley 03/15/2020 Test	data	not	reversed Fail
AttributeError:	'PCA'
object	has	no	attribute
'components_'

03/15/2020	by	Dan
Donley

3 Dan	Donley 03/15/2020 Assertion	thrown Fail
AssertionError:
Inversion	does	not
match	expected	result

03/15/2020	by	Dan
Donley

4 Dan	Donley 03/15/2020
System	can	reverse	PCA
given	a	model	and	a	frame

Pass

5 Dan	Donley 03/15/2020
System	can	reverse	PCA
given	a	model	and	a	frame

Pass

Execution	Summary: PCA	inversion	now	operational
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	16	/	40

Table	8.3.15.	Execution	Report	of	Test	Case	TC-015

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-015
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Select	'Unite	testing'	on	the	right
2 Select	the	gear	and	choose	'Configure'
3 Select	'unittest'	for	the	testing	framework
4 Select	the	folder	with	the	testing	scripts
5 Click	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 03/15/2020 No	plots	created Fail Not	initialized
04/09/2020	by	Dan
Donley

2 Dan	Donley 04/09/2020 Assertion	thrown Fail
AssertionError:	Number
of	graphs	in	folder
incorrect

04/09/2020	by	Dan
Donley

3 Dan	Donley 04/09/2020
Graphs	generated
successfully

Pass

Execution	Summary: Graphs	can	be	created	from	PCA	components
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	17	/	40

Table	8.3.16.	Execution	Report	of	Test	Case	TC-019

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-019
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Select	'Unit	testing'	on	the	right
2 Select	the	gear	and	click	'Configure'
3 Choose	'unittest'	for	the	testing	framework
4 Choose	the	folder	with	the	testing	scripts
5 Click	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/24/2020 Transition	matrix	not	created Fail Not	initialized
02/24/2020	by	Dan
Donley

2 Dan	Donley 02/24/2020 Failed	during	execution Fail
Cannot	perform
operation	on	value	of
type	str

02/24/2020	by	Dan
Donley

3 Dan	Donley 02/24/2020 Failed	during	execution Fail

ValueError:	The	truth
value	of	an	array	with
more	than	one	elemtn	is
ambiguous.

02/24/2020	by	Dan
Donley

4 Dan	Donley 02/24/2020 Assertion	thrown Fail
AssertionError:	state
transition	matrix	not
correctly	calculated

02/24/2020	by	Dan
Donley

5 Dan	Donley 02/24/2020 Matrix	calculated Pass

6 Dan	Donley 03/05/2020 Matrix	calculated Pass

7 Dan	Donley 04/05/2020 Matrix	calculated Pass

Execution	Summary: State	transition	matrix	algorithm	accurate	and	correct
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	18	/	40

Table	8.3.17.	Execution	Report	of	Test	Case	TC-020

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-020
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Learner'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/09/2020
Covariance	matrix	not
calculated

Fail Not	initialized
02/10/2020	by	Dan
Donley

2 Dan	Donley 02/10/2020
Threw	assertion	during	test
case

Fail
Size	of	covariance
matrix	does	not	align
with	expected	size

02/10/2020	by	Dan
Donley

3 Dan	Donley 02/10/2020
Threw	assertion	during	test
case

Fail
Covariance	matrix	does
not	match	with
expected	values

02/11/2020	by	Dan
Donley

4 Dan	Donley 02/11/2020
Covariance	matrix	of	data	set
sucessfully	calculated	and	is
the	right	size

Pass

5 Dan	Donley 02/22/2020
Covariance	matrix	of	data	set
sucessfully	calculated	and	is
the	right	size

Pass

6 Dan	Donley 02/24/2020 Error	during	execution Fail

ValueError:	The	truth
value	of	an	array	with
more	than	one	element
is	ambiguous.

02/24/2020	by	Dan
Donley

7 Dan	Donley 02/24/2020
Covariance	matrix	of	data	set
sucessfully	calculated	and	is
the	right	size

Pass

8 Dan	Donley 03/05/2020

Covariance	matrix	of	data	set
sucessfully	calculated	and	is
the	right	size

Pass

9 Dan	Donley 04/05/2020
Covariance	matrix	of	data	set
sucessfully	calculated	and	is
the	right	size

Pass

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	19	/	40

Execution	Summary: The	covariance	matrix	of	a	given	data	set	is	sucessfully	calculated	and	is	a
symmetrical	matrix	of	the	right	size	based	on	the	data	set.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	20	/	40

Table	8.3.18.	Execution	Report	of	Test	Case	TC-021

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-021
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Learner'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/09/2020
Noise	uncertinaty	not
obtained

Fail Not	initialized
02/09/2020	by	Dan
Donley

2 Dan	Donley 02/09/2020
Noice	uncertainty	calculated
without	throwing	error

Pass

3 Dan	Donley 02/22/2020
Noice	uncertainty	calculated
without	throwing	error

Pass

4 Dan	Donley 02/24/2020
Noice	uncertainty	calculated
without	throwing	error

Pass

5 Dan	Donley 03/05/2020
Noice	uncertainty	calculated
without	throwing	error

Pass

6 Dan	Donley 04/05/2020
Noice	uncertainty	calculated
without	throwing	error

Pass

Execution	Summary: The	noise	uncertainty	is	sucessfully	derived	from	pulling	points	from	a	gaussian
distribution	with	a	mean	zero	and	standard	deviation	of	one.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	21	/	40

Table	8.3.19.	Execution	Report	of	Test	Case	TC-022

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-022
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Click	'Unit	testing'	on	the	right	side
2 Click	the	gear	and	click	'Configure'
3 Select	'unittest'	for	the	testing	framework
4 Select	the	folder	with	the	test	scripts
5 Click	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
James
Fennelly

03/08/2020 No	scatter	plots	created Fail Not	initialized
03/08/2020	by	James
Fennelly

2
James
Fennelly

03/08/2020
Scatter	plots	created,	axis
labels	are	wrong

Fail
Graphs	in	folder	have
extra	characters	in	axis
labels

03/08/2020	by	James
Fennelly

3
James
Fennelly

03/08/2020 Plots	generate Pass

4 Dan	Donley 04/05/2020 Plots	generate Pass

Execution	Summary: Scatter	plots	of	variables	generate	and	right	number	is	generated
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	22	/	40

Table	8.3.20.	Execution	Report	of	Test	Case	TC-023

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-023
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Click	'Unit	testing'	on	the	right	side
2 Click	the	gear	and	click	'Configure'
3 Select	'unittest'	as	the	testing	framework
4 Select	the	folder	with	the	testing	scripts
5 Click	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
James
Fennelly

03/08/2020 No	heatmap	mde Fail Not	initialized
03/09/2020	by	James
Fennelly

2
James
Fennelly

03/09/2020 Heatmap	made	and	is	correct Pass

3 Dan	Donley 04/05/2020 Heatmap	made	and	is	correct Pass

Execution	Summary: Heatmap	is	present	and	is	correct4
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	23	/	40

Table	8.3.21.	Execution	Report	of	Test	Case	TC-024

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-024
Testing	Tools	Used: Manual	testing
Testing	Type: Function	coverage

Execution	Steps:

1 Load	the	lasso_ridge_regression.py	script
2 Run	the	script

3 Examine	results	in	folder	structure,	there	should	be	1	ridge	correlation	graph
and	1	lasso	correlation	graph

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1
James
Fennelly

03/16/2020 No	graphs	generated Fail Not	initialized
03/16/2020	by	James
Fennelly

2
James
Fennelly

03/16/2020 Assertion	thrown Fail
AssertionError:	Number
of	graphs	in	folder
incorrect

03/21/2020	by	Dan
Donley

3
James
Fennelly

03/21/2020 Graphs	generated	and	correct Pass

Execution	Summary: Ridge	and	lasso	correlation	graphs	now	generated
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	24	/	40

Table	8.3.22.	Execution	Report	of	Test	Case	TC-039

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-039
Testing	Tools	Used: spyder-unittest
Testing	Type: Agile	(automated)	testing

Execution	Steps:

1 Select	'Unit	testing'	on	the	right	side	of	the	IDE
2 Select	the	gear	and	click	'Configure'
3 Choose	'unittest'	for	the	testing	framework
4 Select	the	folder	with	the	test	scripts
5 Click	'OK'
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Alec	Dady 03/19/2020
Points	not	evaluated	with
model

Fail Not	initialized
03/19/2020	by	Alec
Dady

2 Alec	Dady 03/19/2020 Crashed	on	execution Fail
Error:	'model.h5'	not
found

03/20/2020	by	Alec
Dady

3 Alec	Dady 04/17/2020
Model	can	be	loaded,	not
evaluated

Fail
Error:	evaluation	not
implemented

04/19/2020	by	Alec
Dady

4 Alec	Dady 04/19/2020
Model	can	be	loaded	&
evaluated

Pass

Execution	Summary: Model	can	be	loaded	&	evaluated
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	25	/	40

Table	8.3.23.	Execution	Report	of	Test	Case	TC-017

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-017
Testing	Tools	Used: Manual	Testing	Script
Testing	Type: Component	interface	testing

Execution	Steps:
1 Open	preprocess_raw_data.py	in	spyder	IDE
2 Click	Run
3 Examine	results	in	file	directory

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/22/2020
Data	set	not	sucessfully
normalized	and	standardized

Fail Not	initialied
02/22/2020	by	Dan
Donley

2 Dan	Donley 02/22/2020
Data	set	normalized	and
standardized,	but	not	to
expected	value

Fail
Data	set	does	not	match
expected	value

02/22/2020	by	Dan
Donley

3 Dan	Donley 02/22/2020
Data	set	normalized	and
standardized

Pass

4 Dan	Donley 03/05/2020
Data	set	normalized	and
standardized

Pass

5 Dan	Donley 04/05/2020
Data	set	normalized	and
standardized

Pass

6 Dan	Donley 04/06/2020
Values	not	correctly
preprocessed	(failure	of
another	case)

Fail
AttributeError:
'numpy.ndarray'	has	no
attribute	'values'

04/06/2020	by	Dan
Donley

7 Dan	Donley 04/06/2020
Data	set	normalized	and
standardized

Pass

Execution	Summary: The	data	set	can	now	be	extracted	from	CSV	files	and	transformed	into	a	matrix	for
processing	through	various	algorithms.

Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	26	/	40

Table	8.3.24.	Execution	Report	of	Test	Case	TC-018

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-018
Testing	Tools	Used: spyder-unittest
Testing	Type: Component	interface	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	'Learner'	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Alec	Dady 02/22/2020
Model	couldn't	be	trained
and	saved

Fail
Test	code	not	yet
implemented

02/22/2020	by	Alec
Dady

2 Alec	Dady 02/22/2020 Model	is	trained	and	saved Pass

3 Dan	Donley 03/05/2020 Model	is	trained	and	saved Pass

4 Alec	Dady 03/09/2020 Model	is	trained	and	saved Pass

5 Alec	Dady 03/12/2020 Model	is	trained	and	saved Pass

6 Alec	Dady 03/17/2020 Model	is	trained	and	saved Pass

7 Alec	Dady 04/05/2020 Model	is	trained	and	saved Pass

Execution	Summary: The	DBN	model	can	be	trained	using	a	data	set	and	saved	to	storage.
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	27	/	40

Table	8.3.25.	Execution	Report	of	Test	Case	TC-025

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-025
Testing	Tools	Used: spyder-unittest
Testing	Type: Component	interface	testing

Execution	Steps:

1 Navigate	to	the	Unit	Testing	pane	on	the	right	side.
2 Click	the	gear	and	select	'Configure'
3 For	the	framework,	select	unittest
4 For	the	directory,	select	the	''	folder
5 Click	OK
6 Click	'Run	tests'

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 02/22/2020
State	not	shown	and	points
not	saved

Fail Not	initialized
02/22/2020	by	Dan
Donley

2 Dan	Donley 02/22/2020 State	is	shown,	points	saved Fail
Data	points	not	correct
value

02/24/2020	by	Dan
Donley

3 Dan	Donley 02/24/2020
Points	are	saved	and
returned	in	new	DataFrame

Pass

4 Dan	Donley 03/05/2020
Points	are	saved	and
returned	in	new	DataFrame

Pass

5 Dan	Donley 04/05/2020
Points	are	saved	and
returned	in	new	DataFrame

Pass

Execution	Summary: Data	points	are	saved	and	stored
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	28	/	40

Table	8.3.26.	Execution	Report	of	Test	Case	TC-026

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-026
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:

1 Open	pca.py
2 Open	lasso_ridge_regression.py
3 Open	singleVariateAnalysis.py
4 Ensure	preprocessed	data	is	in	correct	location
5 Run	the	scripts	and	observe	the	generated	graphs

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/05/2020
No	correlation	graphs
generated

Fail Not	initialized
04/05/2020	by	Dan
Donley

2 Dan	Donley 04/05/2020 Graphs	generated Pass

Execution	Summary: Correlation	scripts	completed	and	ready	for	acceptance	testing
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	29	/	40

Table	8.3.27.	Execution	Report	of	Test	Case	TC-027

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-027
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Launch	the	preprocess_raw_data.py	script
2 Ensure	the	raw	data	is	in	the	correct	location
3 Run	the	script	and	check	if	the	cleaned	data	is	in	the	correct	location

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/05/2020
Data	not	preprocessed	and
cleaned

Fail Not	initialized
04/05/2020	by	Dan
Donley

2 Dan	Donley 04/05/2020
Data	preprocessed	and	stored
in	correct	location

Pass

Execution	Summary: Data	Input	of	Data	module	complete	and	ready	for	requirements	acceptance	testing
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	30	/	40

Table	8.3.28.	Execution	Report	of	Test	Case	TC-028

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-028
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Launch	the	run_model.py	script
2 Ensure	the	generated	data	from	the	filter	is	in	the	correct	location
3 Run	the	script

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Alec	Dady 04/05/2020 Model	wan't	trained Fail Not	initialized
04/05/2020	by	Alec
Dady

2 Alec	Dady 04/05/2020
Model	trained	and	produces
accuracy	result

Pass

Execution	Summary: Model	can	be	trained	given	inputs,	ready	for	acceptance	testing
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	31	/	40

Table	8.3.29.	Execution	Report	of	Test	Case	TC-029

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-029
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Launch	the	run_filter.py	script
2 Ensure	the	cleaned	data	is	in	the	right	location
3 Run	the	script	and	ensure	the	generated	data	is	in	the	correct	location

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 03/17/2020 No	data	generated Fail Not	initialized
03/19/2020	by	Dan
Donley

2 Dan	Donley 03/19/2020 No	data	generated Fail
ValueError:	shape	of	(5,
6)	does	not	match
expected	shape	of	(5,	1)

03/19/2020	by	Dan
Donley

3 Dan	Donley 03/19/2020 Data	generated	and	stored Pass

4 Dan	Donley 03/25/2020 Data	generated	and	stored Pass

5 Dan	Donley 04/05/2020 Data	generated	and	stored Pass

Execution	Summary: Filter	can	now	be	run,	ready	for	acceptance	testing
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	32	/	40

Table	8.3.30.	Execution	Report	of	Test	Case	TC-030

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-030
Testing	Tools	Used: None
Testing	Type: Non-Functional	testing

Execution	Steps: 1 Examine	citizenship	status	of	each	developer
Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction
1 Dan	Donley 09/01/2019 Not	citizen	of	China Pass

2 Alec	Dady 09/01/2019 Not	citizen	of	China Pass

3
James
Fennelly

09/01/2019 Not	citizen	of	China Pass

Execution	Summary: All	developers	do	not	have	citizenship	to	China
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	33	/	40

Table	8.3.31.	Execution	Report	of	Test	Case	TC-031

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-031
Testing	Tools	Used: None
Testing	Type: Operational	readiness	testing

Execution	Steps:

1 Setup	environment	on	Windows	machine
2 Launch	preprocess_raw_data.py
3 Launch	generate_correlation_data.py
4 Launch	run_filter.py
5 Launch	run_model.py

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/05/2020 Failed	during	execution Fail Not	initialized
04/08/2020	by	Dan
Donley

2 Dan	Donley 04/08/2020
System	can	launch	all
scripts

Pass

Execution	Summary: System	operational	on	Windows
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	34	/	40

Table	8.3.32.	Execution	Report	of	Test	Case	TC-032

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-032
Testing	Tools	Used: None
Testing	Type: Operational	readiness	testing

Execution	Steps:

1 Setup	environment	on	Linux	machine
2 Launch	preprocess_raw_data.py
3 Launch	generate_correlation_data.py
4 Launch	run_filter.py
5 Launch	run_model.py

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/05/2020 Failed	during	execution Fail Not	initialized
04/08/2020	by	Dan
Donley

2 Dan	Donley 04/08/2020 System	scripts	launch Pass

Execution	Summary: System	operational	on	Linux
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	35	/	40

Table	8.3.33.	Execution	Report	of	Test	Case	TC-033

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-033
Testing	Tools	Used: None
Testing	Type: Operational	readiness	testing

Execution	Steps:

1 Setup	environment	on	macOS	machine
2 Launch	preprocess_raw_data.py
3 Launch	generate_correlation_data.py
4 Launch	run_filter.py
5 Launch	run_model.py

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Alec	Dady 04/05/2020
Failed	during	execution	of
script

Fail Not	initialized	yet
04/10/2020	by	Alec
Dady

2 Alec	Dady 04/10/2020 Scripts	all	ran Pass

Execution	Summary: System	works	on	macOS
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	36	/	40

Table	8.3.34.	Execution	Report	of	Test	Case	TC-034

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-034
Testing	Tools	Used: Manual	Testing
Testing	Type: Non-Functional	testing

Execution	Steps:
1 Launch	test_tc034.py
2 Examine	results

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 03/15/2020 Failed	during	execution Fail Not	initialized
03/15/2020	by	Dan
Donley

2 Dan	Donley 03/15/2020
All	records	are	either	SPT-
100	or	SPT-140	points

Pass

Execution	Summary: All	points	in	SPT	data	are	either	SPT-100	or	SPT-140	records
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	37	/	40

Table	8.3.35.	Execution	Report	of	Test	Case	TC-035

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-035
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Launch	preprocess_raw_data.py
2 Check	data	stored	in	correct	place

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/11/2020 Data	not	generated Fail Not	initialized
04/11/2020	by	Dan
Donley

2 Dan	Donley 04/11/2020
Data	preprocessed
successfully

Pass

Execution	Summary: Associated	requirements	fulfilled
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	38	/	40

Table	8.3.36.	Execution	Report	of	Test	Case	TC-036

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-036
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Run	correlation	scripts
2 Examine	results	created	in	folder

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/11/2020 No	resutls	created Fail Not	initialized
04/11/2020	by	Dan
Donley

2 Dan	Donley 04/11/2020 Results	created Pass

Execution	Summary: Associated	requirements	fulfilled
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	39	/	40

Table	8.3.37.	Execution	Report	of	Test	Case	TC-037

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-037
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Run	run_filter.py
2 Check	if	results	sent	to	right	location

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/11/2020 Nothing	happened Fail Not	initialized
04/11/2020	by	Dan
Donley

2 Dan	Donley 04/11/2020
Results	sent	to	right
location,	filter	can	run	and
generates	data

Pass

Execution	Summary: Associated	requirements	fulfilled
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

Appendix	TE:	Test	Execution	Report PSU-BD-CSSE-Class2020-Sec-001-Team-015

Test	Execution:	40	/	40

Table	8.3.38.	Execution	Report	of	Test	Case	TC-038

Project	Name: NASA	Psyche	Mission:	Machine	Learning	Analysis	of	Hall 	Thruster
Facil ity	Effects	Data

Test	Case	ID: TC-038
Testing	Tools	Used: Manual	testing
Testing	Type: Functional	testing

Execution	Steps:
1 Run	run_model.py
2 Examine	produced	results	in	folder	structure

Test	Execution	Records:
# Tester Test	Date Actual	Result Status Defect Correction

1 Dan	Donley 04/11/2020
Model	not	created,	saved,
and	evaluated

Fail Not	initialized
04/12/2020	by	Alec
Dady

2 Alec	Dady 04/12/2020
Model	created,	saved,	and
evaluated

Pass

Execution	Summary: Associated	requirements	fulfilled
Acknowledgment:	Generated	from	the	CapStone	process	management	system	©2015

